This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 47
Filtering by

Clear all filters

128928-Thumbnail Image.png
Description

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical device to measure the electrogenic output of a planktonically grown cyanobacterium, Synechocystis sp. PCC6803. Light dependent production of current is measured, and its magnitude is shown to scale with microbial cell concentration and light intensity. Bioelectrochemical characterization of a Synechocystis mutant lacking Photosystem II demonstrates conclusively that production of the majority of photocurrent requires a functional water splitting aparatus and electrons are likely ultimately derived from water. This shows the potential of the device to rapidly and quantitatively characterize photocurrent production by genetically modified strains, an approach that can be used in future studies to delineate the mechanisms of cyanobacterial extracellular electron transport.

ContributorsCereda, Angelo (Author) / Hitchcock, Andrew (Author) / Symes, Mark D. (Author) / Cronin, Leroy (Author) / Bibby, Thomas S. (Author) / Jones, Anne (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-03-17
128503-Thumbnail Image.png
Description

Relaxation dynamics are the central topic in glassy physics. Recently, there is an emerging view that mechanical strain plays a similar role as temperature in altering the relaxation dynamics. Here, we report that mechanical strain in a model metallic glass modulates the relaxation dynamics in unexpected ways. We find that

Relaxation dynamics are the central topic in glassy physics. Recently, there is an emerging view that mechanical strain plays a similar role as temperature in altering the relaxation dynamics. Here, we report that mechanical strain in a model metallic glass modulates the relaxation dynamics in unexpected ways. We find that a large strain amplitude makes a fragile liquid become stronger, reduces dynamical heterogeneity at the glass transition and broadens the loss spectra asymmetrically, in addition to speeding up the relaxation dynamics. These findings demonstrate the distinctive roles of strain compared with temperature on the relaxation dynamics and indicate that dynamical heterogeneity inherently relates to the fragility of glass-forming materials.

ContributorsYu, Hai-Bin (Author) / Richert, Ranko (Author) / Maass, Robert (Author) / Samwer, Konrad (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05-18
128552-Thumbnail Image.png
Description

Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B[subscript 0] = 306(6) GPa and its pressure derivative B0′ = 6.4(5).

Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B[subscript 0] = 306(6) GPa and its pressure derivative B0′ = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. In addition, a spin glass behavior is indicated by magnetic susceptibility measurements.

ContributorsWang, Pei (Author) / Wang, Yonggang (Author) / Wang, Liping (Author) / Zhang, Xinyu (Author) / Yu, Xiaohui (Author) / Zhu, Jinlong (Author) / Wang, Shanmin (Author) / Qin, Jiaqian (Author) / Leinenweber, Kurt (Author) / Chen, Haihua (Author) / He, Duanwei (Author) / Zhao, Yusheng (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2016-02-24
129578-Thumbnail Image.png
Description

Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed

Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore’s electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein–Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar–polarizable chromophore dissolved in a force field water.

Created2014-07-17
129558-Thumbnail Image.png
Description

In recent years, a substantial amount of research has been focused on identifying suitable interfacial layers in organic light-emitting diodes and organic solar cells which has efficient charge transport properties. In this work, a very thin layer of AgOx is deposited on top of the ITO layer along with PEDOT:PSS

In recent years, a substantial amount of research has been focused on identifying suitable interfacial layers in organic light-emitting diodes and organic solar cells which has efficient charge transport properties. In this work, a very thin layer of AgOx is deposited on top of the ITO layer along with PEDOT:PSS and is observed that the solar cells having the AgOx interfacial layer showed a 28% increase in power conversion efficiency in comparison to that of the control cell. The enhancement in efficiency has been ascribed to improvements in fill factor as well as the increase in shunt resistance and decrease in the series resistance of the solar cells. An equivalent circuit model is also provided to understand the changes in the series and shunt resistances in the AgOx modified devices.

ContributorsDas, Sayantan (Author) / Alford, Terry (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-28
129552-Thumbnail Image.png
Description

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80 °C, −20 °C, and room temperature and exposed to multiple freeze-thaw cycles and other adverse conditions in order to assess the possibility that protein oxidation may occur as a result of poor sample storage or handling. Samples from a healthy donor and a participant with poorly controlled type 2 diabetes started at the same low level of protein oxidation and behaved similarly; significant increases in albumin oxidation via S-cysteinylation were found to occur within hours at room temperature and days at −20 °C. Methionine oxidation of apoA-I took place on a longer time scale, setting in after albumin oxidation reached a plateau. Freeze–thaw cycles had a minimal effect on protein oxidation. In matched collections, protein oxidation in serum was the same as that in plasma. Albumin and apoA-I oxidation were not affected by sample headspace or the degree to which vials were sealed. ApoA-I, however, was unexpectedly found to oxidize faster in samples with lower surface-area-to-volume ratios. An initial survey of samples from patients with inflammatory conditions normally associated with elevated oxidative stress-including acute myocardial infarction and prostate cancer—demonstrated a lack of detectable apoA-I oxidation. Albumin S-cysteinylation in these samples was consistent with known but relatively brief exposures to temperatures above −30 °C (the freezing point of blood plasma). Given their properties and ease of analysis, these oxidized proteoforms, once fully validated, may represent the first markers of blood plasma specimen integrity based on direct measurement of oxidative molecular damage that can occur under suboptimal storage conditions.

ContributorsBorges, Chad (Author) / Rehder, Douglas (Author) / Jensen, Sally (Author) / Schaab, Matthew (Author) / Sherma, Nisha (Author) / Yassine, Hussein (Author) / Nikolova, Boriana (Author) / Breburda, Christian (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
129547-Thumbnail Image.png
Description

A brief review of manganese-catalyzed hydrosilylation is presented along with a personal account of how the design for the highly active catalyst, (Ph2PPrPDI)Mn, was conceived. The reductive transformations achieved using this catalyst are described and put into further context by comparing the observed activities with those attained for leading late

A brief review of manganese-catalyzed hydrosilylation is presented along with a personal account of how the design for the highly active catalyst, (Ph2PPrPDI)Mn, was conceived. The reductive transformations achieved using this catalyst are described and put into further context by comparing the observed activities with those attained for leading late first-row transition-metal catalysts.

ContributorsTrovitch, Ryan (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
128443-Thumbnail Image.png
Description

We sequenced and annotated genomes of two haloalkaliphilic Deltaproteobacteria, Geoalkalibacter ferrihydriticus Z-0531T (DSM 17813) and Geoalkalibacter subterraneus Red1T (DSM 23483). During assembly, we discovered that the DSMZ stock culture of G. subterraneus was contaminated. We reisolated G. subterraneus in axenic culture and redeposited it in DSMZ and JCM.

ContributorsBadalamenti, Jonathan P. (Author) / Krajmalnik-Brown, Rosa (Author) / Torres, Cesar (Author) / Bond, Daniel R. (Author) / Biodesign Institute (Contributor)
Created2015-03-12
128441-Thumbnail Image.png
Description

Syntrophic interactions between organohalide-respiring and fermentative microorganisms are critical for effective bioremediation of halogenated compounds. This work investigated the effect of ammonium concentration (up to 4 g liter-1 NH4+-N) on trichloroethene-reducing Dehalococcoides mccartyi and Geobacteraceae in microbial communities fed lactate and methanol. We found that production of ethene by D.

Syntrophic interactions between organohalide-respiring and fermentative microorganisms are critical for effective bioremediation of halogenated compounds. This work investigated the effect of ammonium concentration (up to 4 g liter-1 NH4+-N) on trichloroethene-reducing Dehalococcoides mccartyi and Geobacteraceae in microbial communities fed lactate and methanol. We found that production of ethene by D. mccartyi occurred in mineral medium containing ≤2 g liter-1 NH4+-N and in landfill leachate. For the partial reduction of trichloroethene (TCE) to cis-dichloroethene (cis-DCE) at ≥1 g liter-1 NH4+-N, organohalide-respiring dynamics shifted from D. mccartyi and Geobacteraceae to mainly D. mccartyi. An increasing concentration of ammonium was coupled to lower metabolic rates, longer lag times, and lower gene abundances for all microbial processes studied. The methanol fermentation pathway to acetate and H2 was conserved, regardless of the ammonium concentration provided. However, lactate fermentation shifted from propionic to acetogenic at concentrations of ≥2 g liter-1 NH4+-N. Our study findings strongly support a tolerance of D. mccartyi to high ammonium concentrations, highlighting the feasibility of organohalide respiration in ammonium-contaminated subsurface environments.

ContributorsDelgado, Anca (Author) / Fajardo-Williams, Devyn (Author) / Kegerreis, Kylie (Author) / Parameswaran, Prathap (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2016-04-20
128316-Thumbnail Image.png
Description

Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emission plume of biomass and agricultural burning products.

Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emission plume of biomass and agricultural burning products. Atmospheric particulate matter samples across the tropical Atlantic boundary layer were collected in the summer of 2010 during the southern hemispheric dry season when open fire events were frequent in Africa and South America. The highest black carbon concentrations were detected in the Caribbean Sea and within the African plume, with a regional average of 0.6 μg m-3 for both. The lowest average concentrations were measured off the coast of South America at 0.2 to 0.3 μg m-3. Samples were quantified for black carbon using multiple methods to provide insights into the form and stability of the carbonaceous aerosols (i.e., thermally unstable organic carbon, soot like, and charcoal like). Soot-like aerosols composed up to 45% of the carbonaceous aerosols in the Caribbean Sea to as little as 4% within the African plume. Charcoal-like aerosols composed up to 29% of the carbonaceous aerosols over the oligotrophic Sargasso Sea, suggesting that non-soot-like particles could be present in significant concentrations in remote environments. To better apportion concentrations and forms of black carbon, multiple detection methods should be used, particularly in regions impacted by biomass burning emissions.

ContributorsPohl, K. (Author) / Cantwell, M. (Author) / Herckes, Pierre (Author) / Lohmann, R. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-18