This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 52
Filtering by

Clear all filters

129147-Thumbnail Image.png
Description

To achieve improved sensitivity in cardiac biomarker detection, a batch incubation magnetic microbead immunoassay was developed and tested on three separate human protein targets: myoglobin, heart-type fatty acid binding protein, and cardiac troponin I. A sandwich immunoassay was performed in a simple micro-centrifuge tube allowing full dispersal of the solid

To achieve improved sensitivity in cardiac biomarker detection, a batch incubation magnetic microbead immunoassay was developed and tested on three separate human protein targets: myoglobin, heart-type fatty acid binding protein, and cardiac troponin I. A sandwich immunoassay was performed in a simple micro-centrifuge tube allowing full dispersal of the solid capture surface during incubations. Following magnetic bead capture and wash steps, samples were analyzed in the presence of a manipulated magnetic field utilizing a modified microscope slide and fluorescent inverted microscope to collect video data files. Analysis of the video data allowed for the quantitation of myoglobin, heart-type fatty acid binding protein and cardiac troponin I to levels of 360 aM, 67 fM, and 42 fM, respectively. Compared to the previous detection limit of 50 pM for myoglobin, this offers a five-fold improvement in sensitivity. This improvement in sensitivity and incorporation of additional markers, along with the small sample volumes required, suggest the potential of this platform for incorporation as a detection method in a total sample analysis device enabling multiplexed detection for the analysis of clinical samples.

ContributorsWoolley, Christine (Author) / Hayes, Mark (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-08-20
129156-Thumbnail Image.png
Description

Structural mechanisms behind variations in glycosaminoglycan (GAG) affinities of decorin-binding protein As (DBPAs) from different Borrelia strains were investigated using NMR. DBPA from strain PBr was revealed to have an additional GAG-binding epitope and a retracted linker allowing more access to its GAG-binding sites.

ContributorsMorgan, Ashli (Author) / Wang, Xu (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05-01
129157-Thumbnail Image.png
Description

New and important separations capabilities are being enabled by utilizing other electric field-induced forces besides electrophoresis, among these is dielectrophoresis. Recent works have used experimentally simple insulator-based systems that induce field gradients creating dielectrophoretic force in useful formats. Among these, juxtaposing forces can generate gradient-based steady-state separations schemes globally similar

New and important separations capabilities are being enabled by utilizing other electric field-induced forces besides electrophoresis, among these is dielectrophoresis. Recent works have used experimentally simple insulator-based systems that induce field gradients creating dielectrophoretic force in useful formats. Among these, juxtaposing forces can generate gradient-based steady-state separations schemes globally similar to isoelectric focusing. The system of interest is termed gradient insulator-based dielectrophoresis and can create extremely high resolution steady-state separations for particles four nanometers to ten micrometers in diameter, including nearly all important bioparticles (large proteins, protein aggregates, polynucleotides viruses, organelles, cells, bacteria, etc.). A theoretical underpinning is developed here to understand the relationship between experimental parameters and resolution and to identify the best expected resolution possible. According to the results, differences in particles (and bioparticles) as small as one part in 104 for diameter (subnanometer resolution for a one micrometer particle), one part in 108 for dielectrophoretic parameters (dielectrophoretic mobility, Clausius-Mossotti factor), and one part in 105 for electrophoretic mobility can be resolved. These figures of merit are generally better than any competing technique, in some cases by orders of magnitude. This performance is enabled by very strong focusing forces associated with localized gradients.

ContributorsJones, Paul (Author) / Hayes, Mark (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05-01
128883-Thumbnail Image.png
Description

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can “run away” and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can “run away” and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is predicted by models of tumor angiogenesis studied with the techniques of adaptive dynamics. These techniques also predict that selection drives tumor proliferative potential towards an evolutionarily stable strategy (ESS) that is also convergence-stable. However, adaptive dynamics are predicated on two key assumptions: (i) no more than two distinct clones or evolutionary strategies can exist in the tumor at any given time; and (ii) mutations cause small phenotypic changes. Here we show, using a stochastic simulation, that relaxation of these assumptions has no effect on the predictions of adaptive dynamics in this case. In particular, selection drives proliferative potential towards, and angiogenic potential away from, their respective ESSs. However, these simulations also show that tumor behavior is highly contingent on mutational history, particularly for angiogenesis. Individual tumors frequently grow to lethal size before the evolutionary endpoint is approached. In fact, most tumor dynamics are predicted to be in the evolutionarily transient regime throughout their natural history, so that clinically, the ESS is often largely irrelevant. In addition, we show that clonal diversity as measured by the Shannon Information Index correlates with the speed of approach to the evolutionary endpoint. This observation dovetails with results showing that clonal diversity in Barrett's esophagus predicts progression to malignancy.

ContributorsBickel, Scott T. (Author) / Juliano, Joseph (Author) / Nagy, John (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-04-14
128890-Thumbnail Image.png
Description

The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy 12C6+ ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than

The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy 12C6+ ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L-1⋅d-1, 20.6% higher than wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis under stress. This work demonstrated that heavy-ion irradiation combined with high-throughput screening is an effective means for trait improvement. The resulting mutant D90G-19 may be used for enhanced lipid production.

ContributorsHu, Guangrong (Author) / Fan, Yong (Author) / Zhang, Lei (Author) / Yuan, Cheng (Author) / Wang, Jufang (Author) / Hu, Qiang (Author) / Li, Fuli (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-04-09
128912-Thumbnail Image.png
Description

A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of dro

A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.

ContributorsYanashima, Ryan (Author) / Garcia, Antonio (Author) / Aldridge, James (Author) / Weiss, Noah (Author) / Hayes, Mark (Author) / Andrews, James H. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2012-09-24
128849-Thumbnail Image.png
Description

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the β-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.

ContributorsMarkwardt, Michele L. (Author) / Kremers, Gert-Jan (Author) / Kraft, Catherine A. (Author) / Ray, Krishanu (Author) / Cranfill, Paula J. C. (Author) / Wilson, Korey A. (Author) / Day, Richard N. (Author) / Wachter, Rebekka (Author) / Davidson, Michael W. (Author) / Rizzo, Mark A. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2011-03-29
128316-Thumbnail Image.png
Description

Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emission plume of biomass and agricultural burning products.

Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emission plume of biomass and agricultural burning products. Atmospheric particulate matter samples across the tropical Atlantic boundary layer were collected in the summer of 2010 during the southern hemispheric dry season when open fire events were frequent in Africa and South America. The highest black carbon concentrations were detected in the Caribbean Sea and within the African plume, with a regional average of 0.6 μg m-3 for both. The lowest average concentrations were measured off the coast of South America at 0.2 to 0.3 μg m-3. Samples were quantified for black carbon using multiple methods to provide insights into the form and stability of the carbonaceous aerosols (i.e., thermally unstable organic carbon, soot like, and charcoal like). Soot-like aerosols composed up to 45% of the carbonaceous aerosols in the Caribbean Sea to as little as 4% within the African plume. Charcoal-like aerosols composed up to 29% of the carbonaceous aerosols over the oligotrophic Sargasso Sea, suggesting that non-soot-like particles could be present in significant concentrations in remote environments. To better apportion concentrations and forms of black carbon, multiple detection methods should be used, particularly in regions impacted by biomass burning emissions.

ContributorsPohl, K. (Author) / Cantwell, M. (Author) / Herckes, Pierre (Author) / Lohmann, R. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-18
128262-Thumbnail Image.png
Description

Multilayer structures of TiO2/Ag/TiO2 have been deposited onto flexible substrates by room temperature sputtering to develop indium-free transparent composite electrodes. The effect of Ag thicknesses on optical and electrical properties and the mechanism of conduction have been discussed. The critical thickness (tc) of Ag mid-layer to form a continuous conducting

Multilayer structures of TiO2/Ag/TiO2 have been deposited onto flexible substrates by room temperature sputtering to develop indium-free transparent composite electrodes. The effect of Ag thicknesses on optical and electrical properties and the mechanism of conduction have been discussed. The critical thickness (tc) of Ag mid-layer to form a continuous conducting layer is 9.5 nm and the multilayer has been optimized to obtain a sheet resistance of 5.7 Ω/sq and an average optical transmittance of 90% at 590 nm. The Haacke figure of merit (FOM) for tc has one of the highest FOMs with 61.4 × 10-3 Ω-1/sq.

ContributorsDhar, Aritra (Author) / Alford, Terry (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2013-06-07
128347-Thumbnail Image.png
Description

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that integration of in-house metalloproteomics and quantitative proteomics allows comprehensive uncovering of the bismuth-associated proteomes, including 63 bismuth-binding and 119 bismuth-regulated proteins from Helicobacter pylori, with over 60% being annotated with catalytic functions. Through bioinformatics analysis in combination with bioassays, we demonstrated that bismuth drugs disrupted multiple essential pathways in the pathogen, including ROS defence and pH buffering, by binding and functional perturbation of a number of key enzymes. Moreover, we discovered that HpDnaK may serve as a new target of bismuth drugs to inhibit bacterium-host cell adhesion. The integrative approach we report, herein, provides a novel strategy to unveil the molecular mechanisms of antimicrobial metals against pathogens in general. This study sheds light on the design of new types of antimicrobial agents with multiple targets to tackle the current crisis of antimicrobial resistance.

ContributorsWang, Yuchuan (Author) / Hu, Ligang (Author) / Xu, Feng (Author) / Quan, Quan (Author) / Lai, Yau-Tsz (Author) / Xia, Wei (Author) / Yang, Ya (Author) / Chang, Yuen-Yan (Author) / Yang, Xinming (Author) / Chai, Zhifang (Author) / Wang, Junwen (Author) / Chu, Ivan K. (Author) / Li, Hongyan (Author) / Sun, Hongzhe (Author) / College of Health Solutions (Contributor)
Created2017-04-19