This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 43
Filtering by

Clear all filters

129157-Thumbnail Image.png
Description

New and important separations capabilities are being enabled by utilizing other electric field-induced forces besides electrophoresis, among these is dielectrophoresis. Recent works have used experimentally simple insulator-based systems that induce field gradients creating dielectrophoretic force in useful formats. Among these, juxtaposing forces can generate gradient-based steady-state separations schemes globally similar

New and important separations capabilities are being enabled by utilizing other electric field-induced forces besides electrophoresis, among these is dielectrophoresis. Recent works have used experimentally simple insulator-based systems that induce field gradients creating dielectrophoretic force in useful formats. Among these, juxtaposing forces can generate gradient-based steady-state separations schemes globally similar to isoelectric focusing. The system of interest is termed gradient insulator-based dielectrophoresis and can create extremely high resolution steady-state separations for particles four nanometers to ten micrometers in diameter, including nearly all important bioparticles (large proteins, protein aggregates, polynucleotides viruses, organelles, cells, bacteria, etc.). A theoretical underpinning is developed here to understand the relationship between experimental parameters and resolution and to identify the best expected resolution possible. According to the results, differences in particles (and bioparticles) as small as one part in 104 for diameter (subnanometer resolution for a one micrometer particle), one part in 108 for dielectrophoretic parameters (dielectrophoretic mobility, Clausius-Mossotti factor), and one part in 105 for electrophoretic mobility can be resolved. These figures of merit are generally better than any competing technique, in some cases by orders of magnitude. This performance is enabled by very strong focusing forces associated with localized gradients.

ContributorsJones, Paul (Author) / Hayes, Mark (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05-01
128883-Thumbnail Image.png
Description

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can “run away” and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can “run away” and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is predicted by models of tumor angiogenesis studied with the techniques of adaptive dynamics. These techniques also predict that selection drives tumor proliferative potential towards an evolutionarily stable strategy (ESS) that is also convergence-stable. However, adaptive dynamics are predicated on two key assumptions: (i) no more than two distinct clones or evolutionary strategies can exist in the tumor at any given time; and (ii) mutations cause small phenotypic changes. Here we show, using a stochastic simulation, that relaxation of these assumptions has no effect on the predictions of adaptive dynamics in this case. In particular, selection drives proliferative potential towards, and angiogenic potential away from, their respective ESSs. However, these simulations also show that tumor behavior is highly contingent on mutational history, particularly for angiogenesis. Individual tumors frequently grow to lethal size before the evolutionary endpoint is approached. In fact, most tumor dynamics are predicted to be in the evolutionarily transient regime throughout their natural history, so that clinically, the ESS is often largely irrelevant. In addition, we show that clonal diversity as measured by the Shannon Information Index correlates with the speed of approach to the evolutionary endpoint. This observation dovetails with results showing that clonal diversity in Barrett's esophagus predicts progression to malignancy.

ContributorsBickel, Scott T. (Author) / Juliano, Joseph (Author) / Nagy, John (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-04-14
128912-Thumbnail Image.png
Description

A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of dro

A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.

ContributorsYanashima, Ryan (Author) / Garcia, Antonio (Author) / Aldridge, James (Author) / Weiss, Noah (Author) / Hayes, Mark (Author) / Andrews, James H. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2012-09-24
128849-Thumbnail Image.png
Description

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the β-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.

ContributorsMarkwardt, Michele L. (Author) / Kremers, Gert-Jan (Author) / Kraft, Catherine A. (Author) / Ray, Krishanu (Author) / Cranfill, Paula J. C. (Author) / Wilson, Korey A. (Author) / Day, Richard N. (Author) / Wachter, Rebekka (Author) / Davidson, Michael W. (Author) / Rizzo, Mark A. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2011-03-29
128316-Thumbnail Image.png
Description

Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emission plume of biomass and agricultural burning products.

Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emission plume of biomass and agricultural burning products. Atmospheric particulate matter samples across the tropical Atlantic boundary layer were collected in the summer of 2010 during the southern hemispheric dry season when open fire events were frequent in Africa and South America. The highest black carbon concentrations were detected in the Caribbean Sea and within the African plume, with a regional average of 0.6 μg m-3 for both. The lowest average concentrations were measured off the coast of South America at 0.2 to 0.3 μg m-3. Samples were quantified for black carbon using multiple methods to provide insights into the form and stability of the carbonaceous aerosols (i.e., thermally unstable organic carbon, soot like, and charcoal like). Soot-like aerosols composed up to 45% of the carbonaceous aerosols in the Caribbean Sea to as little as 4% within the African plume. Charcoal-like aerosols composed up to 29% of the carbonaceous aerosols over the oligotrophic Sargasso Sea, suggesting that non-soot-like particles could be present in significant concentrations in remote environments. To better apportion concentrations and forms of black carbon, multiple detection methods should be used, particularly in regions impacted by biomass burning emissions.

ContributorsPohl, K. (Author) / Cantwell, M. (Author) / Herckes, Pierre (Author) / Lohmann, R. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-18
128154-Thumbnail Image.png
Description

Thousands of chemicals have been identified as contaminants of emerging concern (CECs), but prioritizing them concerning ecological and human health risks is challenging. We explored the use of sewage treatment plants as chemical observatories to conveniently identify persistent and bioaccumulative CECs, including toxic organohalides. Nationally representative samples of sewage sludge

Thousands of chemicals have been identified as contaminants of emerging concern (CECs), but prioritizing them concerning ecological and human health risks is challenging. We explored the use of sewage treatment plants as chemical observatories to conveniently identify persistent and bioaccumulative CECs, including toxic organohalides. Nationally representative samples of sewage sludge (biosolids) were analyzed for 231 CECs, of which 123 were detected. Ten of the top 11 most abundant CECs in biosolids were found to be high-production volume chemicals, eight of which representing priority chemicals, including three flame retardants, three surfactants and two antimicrobials. A comparison of chemicals detected in nationally representative biological specimens from humans and municipal biosolids revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that the analysis of sewage sludge can inform human health risk assessments by providing current information on toxic exposures in human populations and associated body burdens of harmful environmental pollutants.

ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2014-01-16
128262-Thumbnail Image.png
Description

Multilayer structures of TiO2/Ag/TiO2 have been deposited onto flexible substrates by room temperature sputtering to develop indium-free transparent composite electrodes. The effect of Ag thicknesses on optical and electrical properties and the mechanism of conduction have been discussed. The critical thickness (tc) of Ag mid-layer to form a continuous conducting

Multilayer structures of TiO2/Ag/TiO2 have been deposited onto flexible substrates by room temperature sputtering to develop indium-free transparent composite electrodes. The effect of Ag thicknesses on optical and electrical properties and the mechanism of conduction have been discussed. The critical thickness (tc) of Ag mid-layer to form a continuous conducting layer is 9.5 nm and the multilayer has been optimized to obtain a sheet resistance of 5.7 Ω/sq and an average optical transmittance of 90% at 590 nm. The Haacke figure of merit (FOM) for tc has one of the highest FOMs with 61.4 × 10-3 Ω-1/sq.

ContributorsDhar, Aritra (Author) / Alford, Terry (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2013-06-07
128412-Thumbnail Image.png
Description

Background: Methylmercury (MeHg) may affect fetal growth; however, prior research often lacked assessment of mercury speciation, confounders, and interactions.

Objective: Our objective was to assess the relationship between MeHg and fetal growth as well as the potential for confounding or interaction of this relationship from speciated mercury, fatty acids, selenium, and

Background: Methylmercury (MeHg) may affect fetal growth; however, prior research often lacked assessment of mercury speciation, confounders, and interactions.

Objective: Our objective was to assess the relationship between MeHg and fetal growth as well as the potential for confounding or interaction of this relationship from speciated mercury, fatty acids, selenium, and sex.

Methods: This cross-sectional study includes 271 singletons born in Baltimore, Maryland, 2004–2005. Umbilical cord blood was analyzed for speciated mercury, serum omega-3 highly unsaturated fatty acids (n-3 HUFAs), and selenium. Multivariable linear regression models controlled for gestational age, birth weight, maternal age, parity, pre-pregnancy body mass index, smoking, hypertension, diabetes, selenium, n-3 HUFAs, and inorganic mercury (IHg).

Results: Geometric mean cord blood MeHg was 0.94 μg/L (95% CI: 0.84, 1.07). In adjusted models for ponderal index, βln(MeHg) = –0.045 (g/cm[superscript 3]) × 100 (95% CI: –0.084, –0.005). There was no evidence of a MeHg × sex interaction with ponderal index. Contrastingly, there was evidence of a MeHg × n-3 HUFAs interaction with birth length [among low n-3 HUFAs, βln(MeHg) = 0.40 cm, 95% CI: –0.02, 0.81; among high n-3 HUFAs, βln(MeHg) = –0.15, 95% CI: –0.54, 0.25; p-interaction = 0.048] and head circumference [among low n-3 HUFAs, βln(MeHg) = 0.01 cm, 95% CI: –0.27, 0.29; among high n-3 HUFAs, βln(MeHg) = –0.37, 95% CI: –0.63, –0.10; p-interaction = 0.042]. The association of MeHg with birth weight and ponderal index was affected by n-3 HUFAs, selenium, and IHg. For birth weight, βln(MeHg) without these variables was –16.8 g (95% CI: –75.0, 41.3) versus –29.7 (95% CI: –93.9, 34.6) with all covariates. Corresponding values for ponderal index were –0.030 (g/cm[superscript 3]) × 100 (95% CI: –0.065, 0.005) and –0.045 (95% CI: –0.084, –0005).

Conclusion: We observed an association of increased MeHg with decreased ponderal index. There is evidence for interaction between MeHg and n-3 HUFAs; infants with higher MeHg and n-3 HUFAs had lower birth length and head circumference. These results should be verified with additional studies.

ContributorsWells, Ellen M. (Author) / Herbstman, Julie B. (Author) / Lin, Yu Hong (Author) / Jarrett, Jeffery (Author) / Verdon, Carl P. (Author) / Ward, Cynthia (Author) / Caldwell, Kathleen L. (Author) / Hibbeln, Joseph R. (Author) / Witter, Frank R. (Author) / Halden, Rolf (Author) / Goldman, Lynn R. (Author) / Biodesign Institute (Contributor)
Created2016-06-26
129616-Thumbnail Image.png
Description

Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature

Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (−111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

ContributorsAlford, Terry (Author) / Das, Sayantan (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2013
129661-Thumbnail Image.png
Description

Using liquid chromatography tandem mass spectrometry, we determined the first nationwide inventories of 13 perfluoroalkyl substances (PFASs) in U.S. biosolids via analysis of samples collected by the U.S. Environmental Protection Agency in the 2001 National Sewage Sludge Survey. Perfluorooctane sulfonate [PFOS; 403 +/- 127 ng/g dry weight (dw)] was the

Using liquid chromatography tandem mass spectrometry, we determined the first nationwide inventories of 13 perfluoroalkyl substances (PFASs) in U.S. biosolids via analysis of samples collected by the U.S. Environmental Protection Agency in the 2001 National Sewage Sludge Survey. Perfluorooctane sulfonate [PFOS; 403 +/- 127 ng/g dry weight (dw)] was the most abundant PFAS detected in biosolids composites representing 32 U.S. states and the District of Columbia, followed by perfluorooctanoate [PFOA; 34 +/- 22 ng/g dw] and perfluorodecanoate [PFDA; 26 +/- 20 ng/g dw]. Mean concentrations in U.S. biosolids of the remaining ten PFASs ranged between 2 and 21 ng/g dw. Interestingly, concentrations of PFOS determined here in biosolids collected prior to the phase-out period (2002) were similar to levels reported in the literature for recent years. The mean load of Sigma PFASs in U.S. biosolids was estimated at 2749-3450 kg/year, of which about 1375-2070 kg is applied on agricultural land and 467-587 kg goes to landfills as an alternative disposal route. This study informs the risk assessment of PFASs by furnishing national inventories of PFASs occurrence and environmental release via biosolids application on land.

ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2013-09-05