This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 28 of 28
Filtering by

Clear all filters

128065-Thumbnail Image.png
Description

Salmonella enterica serovar Typhimurium genome encodes 13 fimbrial operons. Most of the fimbriae encoded by these operons are not produced under laboratory conditions but are likely to be synthesized in vivo. We used an in vivo expression technology (IVET) strategy to identify four fimbrial operons, agf, saf, sti, and stc

Salmonella enterica serovar Typhimurium genome encodes 13 fimbrial operons. Most of the fimbriae encoded by these operons are not produced under laboratory conditions but are likely to be synthesized in vivo. We used an in vivo expression technology (IVET) strategy to identify four fimbrial operons, agf, saf, sti, and stc that are expressed in the spleen. When any three of these operons were deleted, the strain retained wild-type virulence. However, when all four operons were deleted, the resulting strain was completely attenuated, indicating that these four fimbriae play functionally redundant roles critical for virulence. In mice, oral doses of as low as 1 × 10[superscript 5] CFU of the strain with four fimbrial operons deleted provided 100% protection against challenge with 1 × 10[superscript 9] CFU of wild-type S. Typhimurium. We also examined the possible effect of these fimbriae on the ability of a Salmonella vaccine strain to deliver a guest antigen. We modified one of our established attenuated vaccine strains, χ9088, to delete three fimbrial operons while the fourth operon was constitutively expressed. Each derivative was modified to express the Streptococcus pneumoniae antigen PspA. Strains that constitutively expressed saf or stc elicited a strong Th1 response with significantly greater levels of anti-PspA serum IgG and greater protective efficacy than strains carrying saf or stc deletions. The isogenic strain in which all four operons were deleted generated the lowest anti-PspA levels and did not protect against challenge with virulent S. pneumoniae. Our results indicate that these fimbriae play important roles, as yet not understood, in Salmonella virulence and immunogenicity.

ContributorsLaniewski, Pawel (Author) / Baek, Chang-Ho (Author) / Roland, Kenneth (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2017-08-22
128274-Thumbnail Image.png
Description

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceivably could be transmitted to humans through handling and/or consumption of contaminated meat. However, the actual extraintestinal

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceivably could be transmitted to humans through handling and/or consumption of contaminated meat. However, the actual extraintestinal virulence potential of chicken-source fecal E. coli is poorly understood. Here, we assessed whether fecal E. coli isolates from healthy production chickens could cause diseases in a chicken model of avian colibacillosis and three rodent models of ExPEC-associated human infections. From 304 E. coli isolates from chicken fecal samples, 175 E. coli isolates were screened by PCR for virulence genes associated with human-source ExPEC or avian pathogenic E. coli (APEC), an ExPEC subset that causes extraintestinal infections in poultry. Selected isolates genetically identified as ExPEC and non-ExPEC isolates were assessed in vitro for virulence-associated phenotypes, and in vivo for disease-causing ability in animal models of colibacillosis, sepsis, meningitis, and urinary tract infection. Among the study isolates, 13% (40/304) were identified as ExPEC; the majority of these were classified as APEC and uropathogenic E. coli, but none as neonatal meningitis E. coli. Multiple chicken-source fecal ExPEC isolates resembled avian and human clinical ExPEC isolates in causing one or more ExPEC-associated illnesses in experimental animal infection models. Additionally, some isolates that were classified as non-ExPEC were able to cause ExPEC-associated illnesses in animal models, and thus future studies are needed to elucidate their mechanisms of virulence. These findings show that E. coli isolates from chicken feces contain ExPEC-associated genes, exhibit ExPEC-associated in vitro phenotypes, and can cause ExPEC-associated infections in animal models, and thus may pose a health threat to poultry and consumers.

Created2017-07-03
128049-Thumbnail Image.png
Description

Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS2, MoSe2, WS2, and WSe2. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from

Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS2, MoSe2, WS2, and WSe2. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from the first principles within the density functional theory for various points of Brillouin zone including K and H points. It is clearly shown that the electronic band structure at H point of Brillouin zone is very symmetric and similar to the electronic band structure at K point, and therefore, direct optical transitions at H point should be expected in modulated reflectance spectra besides the direct optical transitions at the K point of Brillouin zone. This prediction is confirmed by experimental studies of the electronic band structure of MoS2, MoSe2, WS2, and WSe2 crystals by CER, PR, and PzR spectroscopy, i.e., techniques which are very sensitive to critical points of Brillouin zone. For the four crystals besides the A transition at K point, an AH transition at H point has been observed in CER, PR, and PzR spectra a few tens of meV above the A transition. The spectral difference between A and AH transition has been found to be in a very good agreement with theoretical predictions. The second transition at the H point of Brillouin zone (BH transition) overlaps spectrally with the B transition at K point because of small energy differences in the valence (conduction) band positions at H and K points. Therefore, an extra resonance which could be related to the BH transition is not resolved in modulated reflectance spectra at room temperature for the four crystals.

ContributorsKopaczek, J. (Author) / Polak, M. P. (Author) / Scharoch, P. (Author) / Wu, Kedi (Author) / Chen, Bin (Author) / Tongay, Sefaattin (Author) / Kudrawiec, R. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-06-21
128033-Thumbnail Image.png
Description

The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of

The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe2/MoS2 heterostructures by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.

ContributorsKim, Jonghwan (Author) / Jin, Chenhao (Author) / Chen, Bin (Author) / Cai, Hui (Author) / Zhao, Tao (Author) / Lee, Puiyee (Author) / Kahn, Salman (Author) / Watanabe, Kenji (Author) / Taniguchi, Takashi (Author) / Tongay, Sefaattin (Author) / Crommie, Michael F. (Author) / Wang, Feng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-26
128017-Thumbnail Image.png
Description

The strong light-matter interaction and the valley selective optical selection rules make monolayer (ML) MoS2 an exciting 2D material for fundamental physics and optoelectronics applications. But, so far, optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogeneous and inhomogeneous

The strong light-matter interaction and the valley selective optical selection rules make monolayer (ML) MoS2 an exciting 2D material for fundamental physics and optoelectronics applications. But, so far, optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogeneous and inhomogeneous contributions. This prevented in-depth studies, in contrast to the better-characterized ML materials MoSe2 and WSe2. In this work, we show that encapsulation of ML MoS2 in hexagonal boron nitride can efficiently suppress the inhomogeneous contribution to the exciton linewidth, as we measure in photoluminescence and reflectivity a FWHM down to 2 meV at T = 4 K. Narrow optical transition linewidths are also observed in encapsulated WS2, WSe2, and MoSe2 MLs. This indicates that surface protection and substrate flatness are key ingredients for obtaining stable, high-quality samples. Among the new possibilities offered by the well-defined optical transitions, we measure the homogeneous broadening induced by the interaction with phonons in temperature-dependent experiments. We uncover new information on spin and valley physics and present the rotation of valley coherence in applied magnetic fields perpendicular to the ML.

ContributorsCadiz, F. (Author) / Courtade, E. (Author) / Robert, C. (Author) / Wang, G. (Author) / Shen, Yuxia (Author) / Cai, Hui (Author) / Taniguchi, T. (Author) / Watanabe, K. (Author) / Carrere, H. (Author) / Lagarde, D. (Author) / Manca, M. (Author) / Amand, T. (Author) / Renucci, P. (Author) / Tongay, Sefaattin (Author) / Marie, X. (Author) / Urbaszek, B. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-05-18
129510-Thumbnail Image.png
Description

Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will

Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health.

Created2014-07-31
129216-Thumbnail Image.png
Description

Background: The current influenza vaccines are effective against seasonal influenza, but cannot be manufactured in a timely manner for a sudden pandemic or to be cost-effective to immunize huge flocks of birds. We propose a novel influenza vaccine composing a bacterial carrier and a plasmid cargo. In the immunized subjects,

Background: The current influenza vaccines are effective against seasonal influenza, but cannot be manufactured in a timely manner for a sudden pandemic or to be cost-effective to immunize huge flocks of birds. We propose a novel influenza vaccine composing a bacterial carrier and a plasmid cargo. In the immunized subjects, the bacterial carrier invades and releases its cargo into host cells where the plasmid expresses viral RNAs and proteins for reconstitution of attenuated influenza virus. Here we aimed to construct a mouse Poll-driven plasmid for efficient production of influenza virus. Results: A plasmid was constructed to express all influenza viral RNAs and proteins. This all-in-one plasmid resulted in 10(5)-10(6) 50 % tissue culture infective dose (TCID50)/mL of influenza A virus in baby hamster kidney (BHK-21) cells on the third day post-transfection, and also reconstituted influenza virus in Madin-Darby canine kidney (MDCK) and Chinese hamster ovary (CHO) cells. A 6-unit plasmid was constructed by deleting the HA and NA cassettes from the all-in-one plasmid. Cotransfection of BHK-21 cells with the 6-unit plasmid and the two other plasmids encoding the HA or NA genes resulted in influenza virus titers similar to those produced by the 1-plasmid method. Conclusions: An all-in-one plasmid and a 3-plasmid murine Poll-driven reverse genetics systems were developed, and efficiently reconstituted influenza virus in BHK-21 cells. The all-in-one plasmid may serve as a tool to determine the factors inhibiting virus generation from a large size plasmid. In addition, we recommend a simple and robust "1 + 2" approach to generate influenza vaccine seed virus.

Created2015-06-22
129193-Thumbnail Image.png
Description

Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2)

Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from similar to 90% to similar to 30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics, and sensing.

ContributorsKocer, Hasan (Author) / Butun, Serkan (Author) / Palacios, Edgar (Author) / Liu, Zizhuo (Author) / Tongay, Sefaattin (Author) / Fu, Deyi (Author) / Wang, Kevin (Author) / Wu, Junqiao (Author) / Aydin, Koray (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-08-21