This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 75
Filtering by

Clear all filters

129563-Thumbnail Image.png
Description

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other and the object, the underlying mechanisms remain unclear. To address this question, we asked subjects (n = 30) to match perceived vertical distance between the center of pressure (CoP) of the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same hand (“test” hand). The digits of reference hand were passively placed collinearly (dy = 0 mm). Subjects were then asked to exert different combinations of normal and tangential digit forces (Fn and Ftan, respectively) using the reference hand and then match the memorized dy using the test hand. The reference hand exerted Ftan of thumb and index finger in either same or opposite direction. We hypothesized that, when the tangential forces of the digits are produced in opposite directions, matching error (1) would be biased toward the directions of the tangential forces; and (2) would be greater when the remembered relative contact points are matched with negligible digit force production. For the test hand, digit forces were either negligible (0.5–1 N, 0 ± 0.25 N; Experiment 1) or the same as those exerted by the reference hand (Experiment 2).Matching error was biased towards the direction of digit tangential forces: thumb CoP was placed higher than the index finger CoP when thumb and index finger Ftan were directed upward and downward, respectively, and vice versa (p < 0.001). However, matching error was not dependent on whether the reference and test hand exerted similar or different forces. We propose that the expected sensory consequence of motor commands for tangential forces in opposite directions overrides estimation of fingertip position through haptic sensory feedback.

ContributorsShibata, Daisuke (Author) / Kappers, Astrid M. L. (Author) / Santello, Marco (Author) / College of Health Solutions (Contributor)
Created2014-08-04
129573-Thumbnail Image.png
Description

Bacterial lipopolysaccharides (LPS) are structural components of the outer membranes of Gram-negative bacteria and also are potent inducers of inflammation in mammals. Higher vertebrates are extremely sensitive to LPS, but lower vertebrates, like fish, are resistant to their systemic toxic effects. However, the effects of LPS on the fish intestinal

Bacterial lipopolysaccharides (LPS) are structural components of the outer membranes of Gram-negative bacteria and also are potent inducers of inflammation in mammals. Higher vertebrates are extremely sensitive to LPS, but lower vertebrates, like fish, are resistant to their systemic toxic effects. However, the effects of LPS on the fish intestinal mucosa remain unknown. Edwardsiella ictaluri is a primitive member of the Enterobacteriaceae family that causes enteric septicemia in channel catfish (Ictalurus punctatus). E. ictaluri infects and colonizes deep lymphoid tissues upon oral or immersion infection. Both gut and olfactory organs are the primary sites of invasion. At the systemic level, E. ictaluri pathogenesis is relatively well characterized, but our knowledge about E. ictaluri intestinal interaction is limited. Recently, we observed that E. ictaluri oligo-polysaccharide (O-PS) LPS mutants have differential effects on the intestinal epithelia of orally inoculated catfish. Here we evaluate the effects of E. ictaluri O-PS LPS mutants by using a novel catfish intestinal loop model and compare it to the rabbit ileal loop model inoculated with Salmonella enterica serovar Typhimurium LPS. We found evident differences in rabbit ileal loop and catfish ileal loop responses to E. ictaluri and S. Typhimurium LPS. We determined that catfish respond to E. ictaluri LPS but not to S. Typhimurium LPS. We also determined that E. ictaluri inhibits cytokine production and induces disruption of the intestinal fish epithelia in an O-PS-dependent fashion. The E. ictaluri wild type and ΔwibT LPS mutant caused intestinal tissue damage and inhibited proinflammatory cytokine synthesis, in contrast to E. ictaluri Δgne and Δugd LPS mutants. We concluded that the E. ictaluri O-PS subunits play a major role during pathogenesis, since they influence the recognition of the LPS by the intestinal mucosal immune system of the catfish. The LPS structure of E. ictaluri mutants is needed to understand the mechanism of interaction.

ContributorsSantander, Javier (Author) / Kilbourne, Jacquelyn (Author) / Park, Jie Yeun (Author) / Martin, Taylor (Author) / Loh, Amanda (Author) / Diaz, Ignacia (Author) / Rojas, Robert (Author) / Segovia, Cristopher (Author) / DeNardo, Dale (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-08-01
129588-Thumbnail Image.png
Description

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations.

We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data.

Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.

ContributorsCiais, P. (Author) / Dolman, A. J. (Author) / Bombelli, A. (Author) / Duren, R. (Author) / Peregon, A. (Author) / Rayner, P. J. (Author) / Miller, C. (Author) / Gobron, N. (Author) / Kinderman, G. (Author) / Marland, G. (Author) / Gruber, N. (Author) / Chevallier, F. (Author) / Andres, R. J. (Author) / Balsamo, G. (Author) / Bopp, L. (Author) / Breon, F. -M. (Author) / Broquet, G. (Author) / Dargaville, R. (Author) / Battin, T. J. (Author) / Borges, A. (Author) / Bovensmann, H. (Author) / Buchwitz, M. (Author) / Butler, J. (Author) / Canadell, J. G. (Author) / Cook, R. B. (Author) / DeFries, R. (Author) / Engelen, R. (Author) / Gurney, Kevin (Author) / Heinze, C. (Author) / Heimann, M. (Author) / Held, A. (Author) / Henry, M. (Author) / Law, B. (Author) / Luyssaert, S. (Author) / Miller, J. (Author) / Moriyama, T. (Author) / Moulin, C. (Author) / Myneni, R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129510-Thumbnail Image.png
Description

Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will

Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health.

Created2014-07-31
129516-Thumbnail Image.png
Description

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered and broken up by the impact. Dark fans on crater walls and dark deposits on crater floors are the result of gravity-driven mass wasting triggered by steep slopes and impact seismicity. The fact that dark material is mixed with impact ejecta indicates that it has been processed together with the ejected material. Some small craters display continuous dark ejecta similar to lunar dark-halo impact craters, indicating that the impact excavated the material from beneath a higher-albedo surface. The asymmetric distribution of dark material in impact craters and ejecta suggests non-continuous distribution in the local subsurface. Some positive-relief dark edifices appear to be impact-sculpted hills with dark material distributed over the hill slopes.

Dark features inside and outside of craters are in some places arranged as linear outcrops along scarps or as dark streaks perpendicular to the local topography. The spectral characteristics of the dark material resemble that of Vesta’s regolith. Dark material is distributed unevenly across Vesta’s surface with clusters of all types of dark material exposures. On a local scale, some craters expose or are associated with dark material, while others in the immediate vicinity do not show evidence for dark material. While the variety of surface exposures of dark material and their different geological correlations with surface features, as well as their uneven distribution, indicate a globally inhomogeneous distribution in the subsurface, the dark material seems to be correlated with the rim and ejecta of the older Veneneia south polar basin structure. The origin of the dark material is still being debated, however, the geological analysis suggests that it is exogenic, from carbon-rich low-velocity impactors, rather than endogenic, from freshly exposed mafic material or melt, exposed or created by impacts.

ContributorsJaumann, R. (Author) / Nass, A. (Author) / Otto, K. (Author) / Krohn, K. (Author) / Stephan, K. (Author) / McCord, T. B. (Author) / Williams, David (Author) / Raymond, C. A. (Author) / Blewett, D. T. (Author) / Hiesinger, H. (Author) / Yingst, R. A. (Author) / De Sanctis, M. C. (Author) / Palomba, E. (Author) / Roatsch, T. (Author) / Matz, K-D. (Author) / Preusker, F. (Author) / Scholten, F. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-15
129470-Thumbnail Image.png
Description

Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to

Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial).

Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands.

ContributorsFu, Qiushi (Author) / Choi, Jason (Author) / Gordon, Andrew M. (Author) / Jesunathadas, Mark (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-09-18
129478-Thumbnail Image.png
Description

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Regridding of fossil fuel CO2 emissions (FFCO2) from fine to coarse grids to enable atmospheric transport simulations can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. For example, emissions originally emanating from the land are emitted from a grid cell for which the vertical mixing reflects the roughness and/or surface energy exchange of an ocean surface. We test this potential "dynamical inconsistency" by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are as follows: (1) a commonly used method that allocates emissions to grid cells with no attempt to ensure dynamical consistency with atmospheric transport and (2) an improved method that reallocates emissions to grid cells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 TgC grid cell-1 yr-1 (−3.39 kgC m-2 yr-1) to +30.0 TgC grid cell-1 yr-1 (+2.6 kgC m-2 yr-1) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency.

ContributorsZhang, X. (Author) / Gurney, Kevin (Author) / Rayner, P. (Author) / Liu, Y. (Author) / Asefi-Najafabady, Salvi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129361-Thumbnail Image.png
Description

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by quantifying the functional role of expected vs. actual proprioceptive feedback for planning and regulation of gait in humans. We addressed this question by using a novel methodological approach to deliver fast perturbations of the walking surface stiffness, in conjunction with a virtual reality system that provided visual feedback of upcoming changes of surface stiffness. In the “predictable” experimental condition, we asked subjects to learn associating visual feedback of changes in floor stiffness (sand patch) during locomotion to quantify kinematic and kinetic changes in gait prior to and during the gait cycle. In the “unpredictable” experimental condition, we perturbed floor stiffness at unpredictable instances during the gait to characterize the gait-phase dependent strategies in recovering the locomotor cycle. For the “unpredictable” conditions, visual feedback of changes in floor stiffness was absent or inconsistent with tactile and proprioceptive feedback. The investigation of these perturbation-induced effects on contralateral leg kinematics revealed that visual feedback of upcoming changes in floor stiffness allows for both early (preparatory) and late (post-perturbation) changes in leg kinematics. However, when proprioceptive feedback is not available, the early responses in leg kinematics do not occur while the late responses are preserved although in a, slightly attenuated form. The methods proposed in this study and the preliminary results of the kinematic response of the contralateral leg open new directions for the investigation of the relative role of visual, tactile, and proprioceptive feedback on gait control, with potential implications for designing novel robot-assisted gait rehabilitation approaches.

ContributorsFrost, Ryan (Author) / Skidmore, Jeffrey (Author) / Santello, Marco (Author) / Artemiadis, Panagiotis (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09
129393-Thumbnail Image.png
Description

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon”

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon” material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.

ContributorsBuczkowski, D. L. (Author) / Wyrick, D.Y. (Author) / Toplis, M. (Author) / Yingst, R. A. (Author) / Williams, David (Author) / Garry, W. B. (Author) / Mest, S. (Author) / Kneissl, T. (Author) / Scully, J. E. C. (Author) / Nathues, A. (Author) / De Sanctis, M. C. (Author) / Le Corre, L. (Author) / Reddy, V. (Author) / Hoffmann, M. (Author) / Ammannito, E. (Author) / Frigeri, A. (Author) / Tosi, F. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Raymond, C. A. (Author) / Jaumann, R. (Author) / Pieters, C. M. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-03-14
129394-Thumbnail Image.png
Description

The purpose of this paper is to introduce the Geologic Mapping of Vesta Special Issue/Section of Icarus, which includes several papers containing geologic maps of the surface of Vesta made to support data analysis conducted by the Dawn Science Team during the Vesta Encounter (July 2011–September 2012). In this paper

The purpose of this paper is to introduce the Geologic Mapping of Vesta Special Issue/Section of Icarus, which includes several papers containing geologic maps of the surface of Vesta made to support data analysis conducted by the Dawn Science Team during the Vesta Encounter (July 2011–September 2012). In this paper we briefly discuss pre-Dawn knowledge of Vesta, provide the goals of our geologic mapping campaign, discuss the methodologies and materials used for geologic mapping, review the global geologic context of Vesta, discuss the challenges of mapping the geology of Vesta as a small airless body, and describe the content of the papers in this Special Issue/Section. We conclude with a discussion of lessons learned from our quadrangle-based mapping effort and provide recommendations for conducting mapping campaigns as part of planetary spacecraft nominal missions.

ContributorsWilliams, David (Author) / Yingst, R. Aileen (Author) / Garry, W. Brent (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-03-03