This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 28
Filtering by

Clear all filters

141495-Thumbnail Image.png
Description

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrin (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π* transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D4h symmetry at ground state, a C4v symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.

ContributorsTheisen, Rebekah (Author) / Huang, Liang (Author) / Fleetham, Tyler (Author) / Adams, James (Author) / Li, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-07
128737-Thumbnail Image.png
Description

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of individuals with metabolic syndrome. We further wanted to examine whether similar relationships that we have found previously in skeletal muscle exist in peripheral whole blood cells. All subjects (n=184) were Latino descent from the Arizona Insulin Resistance registry. Subjects were classified based on the metabolic syndrome phenotype according to the National Cholesterol Education Program’s Adult Treatment Panel III. Of the 184 Latino subjects in the study, 74 were classified with the metabolic syndrome and 110 were without. Whole blood gene expression profiling was performed using the Agilent 4x44K Whole Human Genome Microarray. Whole blood microarray analysis identified 1,432 probes that were altered in expression ≥1.2 fold and P<0.05 after Benjamini-Hochberg in the metabolic syndrome subjects. KEGG pathway analysis revealed significant enrichment for pathways including ribosome, oxidative phosphorylation and MAPK signaling (all Benjamini-Hochberg P<0.05). Whole blood mRNA expression changes observed in the microarray data were confirmed by quantitative RT-PCR. Transcription factor binding motif enrichment analysis revealed E2F1, ELK1, NF-kappaB, STAT1 and STAT3 significantly enriched after Bonferroni correction (all P<0.05). The results of the present study demonstrate that whole blood is a useful tissue for studying the metabolic syndrome and its underlying insulin resistance although the relationship between blood and skeletal muscle differs.

ContributorsTangen, Samantha (Author) / Tsinajinnie, Darwin (Author) / Nunez, Martha (Author) / Shaibi, Gabriel (Author) / Mandarino, Lawrence (Author) / Coletta, Dawn (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-17
128390-Thumbnail Image.png
Description

We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in

We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on–off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.

ContributorsHuang, Liang (Author) / Ni, Xuan (Author) / Ditto, William L. (Author) / Spano, Mark (Author) / Carney, Paul R. (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-01-18
128570-Thumbnail Image.png
Description

In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D

In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D cells without affecting cell viability. The biofilm-inhibitory activity of antibiotics and/or the anti-biofilm peptide DJK-5 were evaluated on 3-D cells compared to a plastic surface, in medium with and without fetal bovine serum (FBS). In both media, aminoglycosides were more efficacious in the 3-D cell model. In serum-free medium, most antibiotics (except polymyxins) showed enhanced efficacy when 3-D cells were present. In medium with FBS, colistin was less efficacious in the 3-D cell model. DJK-5 exerted potent inhibition of P. aeruginosa association with both substrates, only in serum-free medium. DJK-5 showed stronger inhibitory activity against P. aeruginosa associated with plastic compared to 3-D cells. The combined addition of tobramycin and DJK-5 exhibited more potent ability to inhibit P. aeruginosa association with both substrates. In conclusion, lung epithelial cells influence the efficacy of most antimicrobials against P. aeruginosa biofilm formation, which in turn depends on the presence or absence of FBS.

ContributorsCrabbe, Aurelie (Author) / Liu, Yulong (Author) / Matthijs, Nele (Author) / Rigole, Petra (Author) / De La Fuente-Nunez, Cesar (Author) / Davis, Richard (Author) / Ledesma, Maria (Author) / Sarker, Shameema (Author) / Van Houdt, Rob (Author) / Hancock, Robert E. W. (Author) / Coenye, Tom (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2017-03-03
128554-Thumbnail Image.png
Description

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.

ContributorsJiang, Junjie (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Liu, Huan (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-04-12
129039-Thumbnail Image.png
Description

Background: Immunomodulatory drugs (IMiDs), such as lenalidomide, are therapeutically active compounds that bind and modulate the E3 ubiquitin ligase substrate recruiter cereblon, thereby affect steady-state levels of cereblon and cereblon binding partners, such as ikaros and aiolos, and induce many cellular responses, including cytotoxicity to multiple myeloma (MM) cells. Nevertheless, it

Background: Immunomodulatory drugs (IMiDs), such as lenalidomide, are therapeutically active compounds that bind and modulate the E3 ubiquitin ligase substrate recruiter cereblon, thereby affect steady-state levels of cereblon and cereblon binding partners, such as ikaros and aiolos, and induce many cellular responses, including cytotoxicity to multiple myeloma (MM) cells. Nevertheless, it takes many days for MM cells to die after IMiD induced depletion of ikaros and aiolos and thus we searched for other cereblon binding partners that participate in IMiD cytotoxicity.

Methods: Cereblon binding partners were identified from a MM cell line expressing histidine-tagged cereblon by pulling down cereblon and its binding partners and verified by co-immunoprecipitation. IMiD effects were determined by western blot analysis, cell viability assay, microRNA array and apoptosis analysis.

Results: We identified argonaute 2 (AGO2) as a cereblon binding partner and found that the steady-state levels of AGO2 were regulated by cereblon. Upon treatment of IMiD-sensitive MM cells with lenalidomide, the steady-state levels of cereblon were significantly increased, whereas levels of AGO2 were significantly decreased. It has been reported that AGO2 plays a pivotal role in microRNA maturation and function. Interestingly, upon treatment of MM cells with lenalidomide, the steady-state levels of microRNAs were significantly altered. In addition, silencing of AGO2 in MM cells, regardless of sensitivity to IMiDs, significantly decreased the levels of AGO2 and microRNAs and massively induced cell death.

Conclusion: These results support the notion that the cereblon binding partner AGO2 plays an important role in regulating MM cell growth and survival and AGO2 could be considered as a novel drug target for overcoming IMiD resistance in MM cells.

ContributorsXu, Qinqin (Author) / Hou, Yue-xian (Author) / Langlais, Paul (Author) / Erickson, Patrick (Author) / Zhu, James (Author) / Shi, Chang-Xin (Author) / Luo, Moulun (Author) / Zhu, Yuanxiao (Author) / Xu, Ye (Author) / Mandarino, Lawrence (Author) / Stewart, Keith (Author) / Chang, Xiu-bao (Author) / College of Health Solutions (Contributor)
Created2016-05-03
128767-Thumbnail Image.png
Description

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance.

Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid-shear environment of microgravity is relevant to physical forces encountered by pathogens during the infection process, insights gained from this study could identify novel infectious disease mechanisms, with downstream benefits for the general public.

Created2013-12-04
128863-Thumbnail Image.png
Description

The probiotic effects of Lactobacillus reuteri have been speculated to partly depend on its capacity to produce the antimicrobial substance reuterin during the reduction of glycerol in the gut. In this study, the potential of this process to protect human intestinal epithelial cells against infection with Salmonella enterica serovar Typhimurium

The probiotic effects of Lactobacillus reuteri have been speculated to partly depend on its capacity to produce the antimicrobial substance reuterin during the reduction of glycerol in the gut. In this study, the potential of this process to protect human intestinal epithelial cells against infection with Salmonella enterica serovar Typhimurium was investigated. We used a three-dimensional (3-D) organotypic model of human colonic epithelium that was previously validated and applied to study interactions between S. Typhimurium and the intestinal epithelium that lead to enteric salmonellosis. Using this model system, we show that L. reuteri protects the intestinal cells against the early stages of Salmonella infection and that this effect is significantly increased when L. reuteri is stimulated to produce reuterin from glycerol. More specifically, the reuterin-containing ferment of L. reuteri caused a reduction in Salmonella adherence and invasion (1 log unit), and intracellular survival (2 log units). In contrast, the L. reuteri ferment without reuterin stimulated growth of the intracellular Salmonella population with 1 log unit. The short-term exposure to reuterin or the reuterin-containing ferment had no observed negative impact on intestinal epithelial cell health. However, long-term exposure (24 h) induced a complete loss of cell-cell contact within the epithelial aggregates and compromised cell viability. Collectively, these results shed light on a potential role for reuterin in inhibiting Salmonella-induced intestinal infections and may support the combined application of glycerol and L. reuteri. While future in vitro and in vivo studies of reuterin on intestinal health should fine-tune our understanding of the mechanistic effects, in particular in the presence of a complex gut microbiota, this the first report of a reuterin effect on the enteric infection process in any mammalian cell type.

Created2012-05-31
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01