This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 44
Filtering by

Clear all filters

190-Thumbnail Image.png
Description

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a critical question is whether these experiences will result in changed behaviors and preferences in the long term. This paper presents initial findings on the likelihood of long-term changes in telework, daily travel, restaurant patronage, and air travel based on survey data collected from adults in the United States in Spring 2020. These data suggest that a sizable fraction of the increase in telework and decreases in both business air travel and restaurant patronage are likely here to stay. As for daily travel modes, public transit may not fully recover its pre-pandemic ridership levels, but many of our respondents are planning to bike and walk more than they used to. These data reflect the responses of a sample that is higher income and more highly educated than the US population. The response of these particular groups to the COVID-19 pandemic is perhaps especially important to understand, however, because their consumption patterns give them a large influence on many sectors of the economy.

Created2020-09-03
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
128589-Thumbnail Image.png
Description

Increasing levels of financial inequality prompt questions about the relationship between income and well-being. Using a twins sample from the Survey of Midlife Development in the U. S. and controlling for personality as core self-evaluations (CSE), we found that men, but not women, had higher subjective financial well-being (SFWB) when

Increasing levels of financial inequality prompt questions about the relationship between income and well-being. Using a twins sample from the Survey of Midlife Development in the U. S. and controlling for personality as core self-evaluations (CSE), we found that men, but not women, had higher subjective financial well-being (SFWB) when they had higher incomes. This relationship was due to ‘unshared environmental’ factors rather than genes, suggesting that the effect of income on SFWB is driven by unique experiences among men. Further, for women and men, we found that CSE influenced income and SFWB, and that both genetic and environmental factors explained this relationship. Given the relatively small and male-specific relationship between income and SFWB, and the determination of both income and SFWB by personality, we propose that policy makers focus on malleable factors beyond merely income in order to increase SFWB, including financial education and building self-regulatory capacity.

ContributorsZyphur, Michael J. (Author) / Li, Wen-Dong (Author) / Zhang, Zhen (Author) / Arvey, Richard D. (Author) / Barsky, Adam P. (Author) / W.P. Carey School of Business (Contributor)
Created2015-09-29
128582-Thumbnail Image.png
Description

The debate about representation in the brain and the nature of the cognitive system has been going on for decades now. This paper examines the neurophysiological evidence, primarily from single cell recordings, to get a better perspective on both the issues. After an initial review of some basic concepts, the

The debate about representation in the brain and the nature of the cognitive system has been going on for decades now. This paper examines the neurophysiological evidence, primarily from single cell recordings, to get a better perspective on both the issues. After an initial review of some basic concepts, the paper reviews the data from single cell recordings – in cortical columns and of category-selective and multisensory neurons. In neuroscience, columns in the neocortex (cortical columns) are understood to be a basic functional/computational unit. The paper reviews the fundamental discoveries about the columnar organization and finds that it reveals a massively parallel search mechanism. This columnar organization could be the most extensive neurophysiological evidence for the widespread use of localist representation in the brain. The paper also reviews studies of category-selective cells. The evidence for category-selective cells reveals that localist representation is also used to encode complex abstract concepts at the highest levels of processing in the brain. A third major issue is the nature of the cognitive system in the brain and whether there is a form that is purely abstract and encoded by single cells. To provide evidence for a single-cell based purely abstract cognitive system, the paper reviews some of the findings related to multisensory cells. It appears that there is widespread usage of multisensory cells in the brain in the same areas where sensory processing takes place. Plus there is evidence for abstract modality invariant cells at higher levels of cortical processing. Overall, that reveals the existence of a purely abstract cognitive system in the brain. The paper also argues that since there is no evidence for dense distributed representation and since sparse representation is actually used to encode memories, there is actually no evidence for distributed representation in the brain. Overall, it appears that, at an abstract level, the brain is a massively parallel, distributed computing system that is symbolic. The paper also explains how grounded cognition and other theories of the brain are fully compatible with localist representation and a purely abstract cognitive system.

ContributorsRoy, Asim (Author) / W.P. Carey School of Business (Contributor)
Created2017-02-16
127817-Thumbnail Image.png
Description

Accessibility is increasingly used as a metric when evaluating changes to public transport systems. Transit travel times contain variation depending on when one departs relative to when a transit vehicle arrives, and how well transfers are coordinated given a particular timetable. In addition, there is necessarily uncertainty in the value

Accessibility is increasingly used as a metric when evaluating changes to public transport systems. Transit travel times contain variation depending on when one departs relative to when a transit vehicle arrives, and how well transfers are coordinated given a particular timetable. In addition, there is necessarily uncertainty in the value of the accessibility metric during sketch planning processes, due to scenarios which are underspecified because detailed schedule information is not yet available. This article presents a method to extend the concept of "reliable" accessibility to transit to address the first issue, and create confidence intervals and hypothesis tests to address the second.

ContributorsConway, Matthew Wigginton (Author) / Byrd, Andrew (Author) / van Eggermond, Michael (Author)
Created2018-07-23
127809-Thumbnail Image.png
Description

There is a need for indicators of transportation-land use system quality that are understandable to a wide range of stakeholders, and which can provide immediate feedback on the quality of interactively designed scenarios. Location-based accessibility indicators are promising candidates, but indicator values can vary strongly depending on time of day

There is a need for indicators of transportation-land use system quality that are understandable to a wide range of stakeholders, and which can provide immediate feedback on the quality of interactively designed scenarios. Location-based accessibility indicators are promising candidates, but indicator values can vary strongly depending on time of day and transfer wait times. Capturing this variation increases complexity, slowing down calculations. We present new methods for rapid yet rigorous computation of accessibility metrics, allowing immediate feedback during early-stage transit planning, while being rigorous enough for final analyses. Our approach is statistical, characterizing the uncertainty and variability in accessibility metrics due to differences in departure time and headway-based scenario specification. The analysis is carried out on a detailed multi-modal network model including both public transportation and streets. Land use data are represented at high resolution. These methods have been implemented as open-source software running on commodity cloud infrastructure. Networks are constructed from standard open data sources, and scenarios are built in a map-based web interface. We conclude with a case study, describing how these methods were applied in a long-term transportation planning process for metropolitan Amsterdam.

ContributorsConway, Matthew Wigginton (Author) / Byrd, Andrew (Author) / van der Linden, Marco (Author)
Created2017
129385-Thumbnail Image.png
Description

Although perceptions of physically, socially, and morally stigmatized occupations – ‘dirty work’ – are socially constructed, very little attention has been paid to how the context shapes those constructions. We explore the impact of historical trends (when), macro and micro cultures (where), and demographic characteristics (who) on the social construction

Although perceptions of physically, socially, and morally stigmatized occupations – ‘dirty work’ – are socially constructed, very little attention has been paid to how the context shapes those constructions. We explore the impact of historical trends (when), macro and micro cultures (where), and demographic characteristics (who) on the social construction of dirty work. Historically, the rise of hygiene, along with economic and technological development, resulted in greater societal distancing from dirty work, while the rise of liberalism has resulted in greater social acceptance of some morally stigmatized occupations. Culturally, masculinity tends to be preferred over femininity as an ideological discourse for dirty work, unless the occupation is female-dominated; members of collectivist cultures are generally better able than members of individualist cultures to combat the collective-level threat that stigma inherently represents; and members of high power-distance cultures tend to view dirty work more negatively than members of low power-distance cultures. Demographically, marginalized work tends to devolve to marginalized socioeconomic, gender, and racioethnic categories, creating a pernicious and entrapping recursive loop between ‘dirty work’ and being labeled as ‘dirty people.’

ContributorsAshforth, Blake (Author) / Kreiner, Glen E. (Author) / W.P. Carey School of Business (Contributor)
Created2014-07-01
128391-Thumbnail Image.png
Description

Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key

Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key challenge is that the signals collected are necessarily time delayed, due to the varying physical distances from the nodes to the data collection centre. To meet this challenge, we develop a compressive-sensing-based approach enabling reconstruction of the full topology of the underlying geospatial network and more importantly, accurate estimate of the time delays. A standard triangularization algorithm can then be employed to find the physical locations of the nodes in the network. We further demonstrate successful detection of a hidden node (or a hidden source or threat), from which no signal can be obtained, through accurate detection of all its neighbouring nodes. As a geospatial network has the feature that a node tends to connect with geophysically nearby nodes, the localized region that contains the hidden node can be identified.

ContributorsSu, Riqi (Author) / Wang, Wen-Xu (Author) / Wang, Xiao (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-01-06
128389-Thumbnail Image.png
Description

Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high

Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks.

ContributorsChen, Yu-Zhong (Author) / Wang, Le-Zhi (Author) / Wang, Wen-Xu (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-04-20
128519-Thumbnail Image.png
Description

A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals

A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control.

ContributorsWang, Le-Zhi (Author) / Chen, Yu-Zhong (Author) / Wang, Wen-Xu (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-01-11