This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 77
Filtering by

Clear all filters

128940-Thumbnail Image.png
Description

International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and its relation to patterns of international development. Using a network

International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and its relation to patterns of international development. Using a network tool known as triadic analysis we develop triad significance profiles for a series of agricultural commodities traded among countries. Results reveal a novel network “superfamily” combining properties of biological information processing networks and human social networks. To better understand this unique network signature, we examine in more detail the degree and triadic distributions within the trade network by country and commodity. Our results show that countries fall into two very distinct classes based on their triadic frequencies. Roughly 165 countries fall into one class while 18, all highly isolated with respect to international agricultural trade, fall into the other. Only Vietnam stands out as a unique case. Finally, we show that as a country becomes less isolated with respect to number of trading partners, the country's triadic signature follows a predictable trajectory that may correspond to a trajectory of development.

Created2012-07-02
129119-Thumbnail Image.png
Description

Cities around the world are facing an ever-increasing variety of challenges that seem to make more sustainable urban futures elusive. Many of these challenges are being driven by, and exacerbated by, increases in urban populations and climate change. Novel solutions are needed today if our cities are to have any

Cities around the world are facing an ever-increasing variety of challenges that seem to make more sustainable urban futures elusive. Many of these challenges are being driven by, and exacerbated by, increases in urban populations and climate change. Novel solutions are needed today if our cities are to have any hope of more sustainable and resilient futures. Because most of the environmental impacts of any project are manifest at the point of design, we posit that this is where a real difference in urban development can be made. To this end, we present a transformative model that merges urban design and ecology into an inclusive, creative, knowledge-to-action process. This design-ecology nexus—an ecology for cities—will redefine both the process and its products. In this paper we: (1) summarize the relationships among design, infrastructure, and urban development, emphasizing the importance of joining the three to achieve urban climate resilience and enhance sustainability; (2) discuss how urban ecology can move from an ecology of cities to an ecology for cities based on a knowledge-to-action agenda; (3) detail our model for a transformational urban design-ecology nexus, and; (4) demonstrate the efficacy of our model with several case studies.

Created2014-11-30
129127-Thumbnail Image.png
Description

The purpose of applying social-ecological resilience thinking to food systems is twofold: First, to define those factors that help achieve a state in which food security for all and at all scales is possible. Second, to provide insights into how to maintain the system in this desirable regime. However, the

The purpose of applying social-ecological resilience thinking to food systems is twofold: First, to define those factors that help achieve a state in which food security for all and at all scales is possible. Second, to provide insights into how to maintain the system in this desirable regime. However, the resilience of food systems is distinct from the broader conceptualizations of resilience in social-ecological systems because of the fundamentally normative nature of food systems: humans need food to survive, and thus system stability is typically a primary policy objective for food system management. With that being said, society also needs food systems that can intensify sustainably i.e., feed everybody equitably, provide livelihoods and avoid environmental degradation while responding flexibly to shocks and uncertainty. Today’s failure in meeting food security objectives can be interpreted as the lack of current governance arrangements to consider the full and differential dimensions of food system functions – economic, ecological and social – at appropriate scales: in other words, the multifunctionality of food.

We focus on functional and response diversity as two key attributes of resilient, multifunctional food systems; respectively, the number of different functional groups and the diversity of types of responses to disturbances within a functional group. Achieving food security will require functional redundancy and enhanced response diversity, creating multiple avenues to fulfill all food system objectives. We use the 2013-15 drought in California to unpack the potential differences between managing for a single function – economic profit – and multiple functions. Our analysis emphasizes how the evolution of the Californian food system has reduced functional and response diversity and created vulnerabilities. Managing for the resilience of food systems will require a shift in priorities from profit maximization to the management for all functions that create full food security at multiple scales.

Created2015
129128-Thumbnail Image.png
Description

This article identifies equity outcomes associated with three biofuel systems in Brazil, Ethiopia and Guatemala. Acknowledging that winners and losers are socially and politically generated, the article identifies some of the factors behind the distribution of winners and losers along different stages of three sugarcane-ethanol supply chains. Analysing the outcomes

This article identifies equity outcomes associated with three biofuel systems in Brazil, Ethiopia and Guatemala. Acknowledging that winners and losers are socially and politically generated, the article identifies some of the factors behind the distribution of winners and losers along different stages of three sugarcane-ethanol supply chains. Analysing the outcomes for equity within each case study reveals an uneven distribution that we argue is related to the procedure and structure of the given sugarcane-ethanol system, and the recognition of the impacts on different actors within those structures. Increasing equity in sugarcane-ethanol systems will require greater openness in decision making processes, in order that multiple voices are taken into account in the promotion, production and consumption of biofuels – particularly those of smaller and less powerful actors.

Created2015-06-01
128890-Thumbnail Image.png
Description

The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy 12C6+ ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than

The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy 12C6+ ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L-1⋅d-1, 20.6% higher than wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis under stress. This work demonstrated that heavy-ion irradiation combined with high-throughput screening is an effective means for trait improvement. The resulting mutant D90G-19 may be used for enhanced lipid production.

ContributorsHu, Guangrong (Author) / Fan, Yong (Author) / Zhang, Lei (Author) / Yuan, Cheng (Author) / Wang, Jufang (Author) / Hu, Qiang (Author) / Li, Fuli (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-04-09
128904-Thumbnail Image.png
Description

Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. With the world’s population expected to reach 10 billion by 2100, nearly 90% of whom will live in urban areas, a critical question for planetary sustainability is how the size

Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. With the world’s population expected to reach 10 billion by 2100, nearly 90% of whom will live in urban areas, a critical question for planetary sustainability is how the size of cities affects energy use and carbon dioxide (CO2) emissions. Are larger cities more energy and emissions efficient than smaller ones? Do larger cities exhibit gains from economies of scale with regard to emissions? Here we examine the relationship between city size and CO2 emissions for U.S. metropolitan areas using a production accounting allocation of emissions. We find that for the time period of 1999–2008, CO2 emissions scale proportionally with urban population size. Contrary to theoretical expectations, larger cities are not more emissions efficient than smaller ones.

ContributorsFragkias, Michail (Author) / Lobo, Jose (Author) / Strumsky, Deborah (Author) / Seto, Karen C. (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-06-04
128761-Thumbnail Image.png
Description

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can make contributions to a linear public good by logging into a web application and performing virtual actions. We compared four treatments, with different group sizes and information of (relative) performance of other groups. We find that information feedback about performance of other groups has a small positive effect if we control for various attributes of the groups. Moreover, we find a significant effect of the contributions of others in the group in the previous day on the number of points earned in the current day. Our results confirm that people participate more when participants in their group participate more, and are influenced by information about the relative performance of other groups.

ContributorsJanssen, Marco (Author) / Lee, Allen (Author) / Sundaram, Hari (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-07-26
128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10
128294-Thumbnail Image.png
Description

Differences in governance relationships and community efforts to remove an exotic, rapidly spreading invasive plant, the-mile-a-minute weed (Mikania micrantha), are explored in five case study community forests in the subtropical region of Chitwan, Nepal. An institutional analysis informs an examination of the de jure (formal) versus de facto (on the

Differences in governance relationships and community efforts to remove an exotic, rapidly spreading invasive plant, the-mile-a-minute weed (Mikania micrantha), are explored in five case study community forests in the subtropical region of Chitwan, Nepal. An institutional analysis informs an examination of the de jure (formal) versus de facto (on the ground) institutions and actor relationships relevant to Mikania removal efforts. Contrary to the expectations set by the de jure situation, we find heterogeneous governance relationships and norms related to Mikania management across community forests. Content analysis of interview data illuminates reoccurring themes and their implications for social and ecological outcomes in the communities. Complex governance relationships and regular discussion of distrust of government and non-government officials help explain collective action efforts and management decisions. The content analysis suggests that Mikania is impacting people’s daily lives but the degree of severity and the response to the disruption varies substantially and is heavily affected by other problems experienced by community forest members. Our results indicate that understanding how the de facto, or on the ground situation, differs from the de jure institutions may be vital in structuring successful efforts to manage invasive species and understanding collective action problems related to other social-ecological threats. We present data-informed propositions about common pool resource management and invasive species. This study contributes to a better scientific understanding of how institutions mediate social-ecological challenges influencing common pool resources more broadly.

ContributorsSullivan, Abigail (Author) / York, Abigail (Author) / White, Dave (Author) / Hall, Sharon (Author) / Yabiku, Scott T. (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2017-03-06
128310-Thumbnail Image.png
Description

The International Long-Term Ecological Research (ILTER) network comprises > 600 scientific groups conducting site-based research within 40 countries. Its mission includes improving the understanding of global ecosystems and informs solutions to current and future environmental problems at the global scales. The ILTER network covers a wide range of social-ecological conditions

The International Long-Term Ecological Research (ILTER) network comprises > 600 scientific groups conducting site-based research within 40 countries. Its mission includes improving the understanding of global ecosystems and informs solutions to current and future environmental problems at the global scales. The ILTER network covers a wide range of social-ecological conditions and is aligned with the Programme on Ecosystem Change and Society (PECS) goals and approach. Our aim is to examine and develop the conceptual basis for proposed collaboration between ILTER and PECS. We describe how a coordinated effort of several contrasting LTER site-based research groups contributes to the understanding of how policies and technologies drive either toward or away from the sustainable delivery of ecosystem services. This effort is based on three tenets: transdisciplinary research; cross-scale interactions and subsequent dynamics; and an ecological stewardship orientation.

The overarching goal is to design management practices taking into account trade-offs between using and conserving ecosystems toward more sustainable solutions. To that end, we propose a conceptual approach linking ecosystem integrity, ecosystem services, and stakeholder well-being, and as a way to analyze trade-offs among ecosystem services inherent in diverse management options. We also outline our methodological approach that includes: (i) monitoring and synthesis activities following spatial and temporal trends and changes on each site and by documenting cross-scale interactions; (ii) developing analytical tools for integration; (iii) promoting trans-site comparison; and (iv) developing conceptual tools to design adequate policies and management interventions to deal with trade-offs. Finally, we highlight the heterogeneity in the social-ecological setting encountered in a subset of 15 ILTER sites. These study cases are diverse enough to provide a broad cross-section of contrasting ecosystems with different policy and management drivers of ecosystem conversion; distinct trends of biodiversity change; different stakeholders’ preferences for ecosystem services; and diverse components of well-being issues.

ContributorsMaass, Manuel (Author) / Balvanera, Patricia (Author) / Bourgeron, Patrick (Author) / Equihua, Miguel (Author) / Baudry, Jacques (Author) / Dick, Jan (Author) / Forsius, Martin (Author) / Halada, Lubos (Author) / Krauze, Kinga (Author) / Nakaoka, Masahiro (Author) / Orenstein, Daniel E. (Author) / Parr, Terry W. (Author) / Redman, Charles (Author) / Rozzi, Ricardo (Author) / Santos-Reis, Margarida (Author) / Swemmer, Anthony M. (Author) / Vadineanu, Angheluta (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016