This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 85
Filtering by

Clear all filters

190-Thumbnail Image.png
Description

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a critical question is whether these experiences will result in changed behaviors and preferences in the long term. This paper presents initial findings on the likelihood of long-term changes in telework, daily travel, restaurant patronage, and air travel based on survey data collected from adults in the United States in Spring 2020. These data suggest that a sizable fraction of the increase in telework and decreases in both business air travel and restaurant patronage are likely here to stay. As for daily travel modes, public transit may not fully recover its pre-pandemic ridership levels, but many of our respondents are planning to bike and walk more than they used to. These data reflect the responses of a sample that is higher income and more highly educated than the US population. The response of these particular groups to the COVID-19 pandemic is perhaps especially important to understand, however, because their consumption patterns give them a large influence on many sectors of the economy.

Created2020-09-03
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
128734-Thumbnail Image.png
Description

n public planning processes for sustainable urban development, planners and experts often face the challenge of engaging a public that is not familiar with sustainability principles or does not subscribe to sustainability values. Although there are calls to build the public’s sustainability literacy through social learning, such efforts require sufficient

n public planning processes for sustainable urban development, planners and experts often face the challenge of engaging a public that is not familiar with sustainability principles or does not subscribe to sustainability values. Although there are calls to build the public’s sustainability literacy through social learning, such efforts require sufficient time and other resources that are not always available. Alternatively, public participation processes may be realigned with the sustainability literacy the participants possess, and their capacity can modestly be built during the engagement. Asking what tools might successfully align public participation with participants’ sustainability literacy, this article describes and evaluates a public participation process in Phoenix, Arizona, in which researchers, in collaboration with city planners, facilitated sustainability conversations as part of an urban development process. The tool employed for Visually Enhanced Sustainability Conversation (VESC) was specifically designed to better align public participation with stakeholders’ sustainability literacy. We tested and evaluated VESC through interviews with participants, city planners, and members of the research team, as well as an analysis of project reports. We found that the use of VESC successfully facilitated discussions on pertinent sustainability issues and embedded sustainability objectives into the project reports. We close with recommendations for strengthening tools like VESC for future public engagements.

ContributorsCohen, Matthew (Author) / Wiek, Arnim (Author) / Kay, Braden (Author) / Harlow, John (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-07-03
128728-Thumbnail Image.png
Description

Successful careers in sustainability are determined by positive real-world change towards sustainability. This success depends heavily on professional skills in effective and compassionate communication, collaborative teamwork, or impactful stakeholder engagement, among others. These professional skills extend beyond content knowledge and methodical expertise. Current sustainability programs do not sufficiently facilitate students’

Successful careers in sustainability are determined by positive real-world change towards sustainability. This success depends heavily on professional skills in effective and compassionate communication, collaborative teamwork, or impactful stakeholder engagement, among others. These professional skills extend beyond content knowledge and methodical expertise. Current sustainability programs do not sufficiently facilitate students’ acquisition of such skills. This article presents a brief summary of professional skills, synthesized from the literature, and why they are relevant for sustainability professionals. Second, it presents how these skills have been taught in an undergraduate course in sustainability at Arizona State University, USA. Third, it critically discusses the effectiveness and challenges of that exemplary course. Finally, the article concludes with outlining the lessons learned that should be incorporated into future course offerings.

Created2017-03-07
128726-Thumbnail Image.png
Description

Resilience can have desirable and undesirable consequences. Thus, resilience should not be viewed as a normative desirable goal, but as a descriptor of complex systems dynamics. From this perspective, we apply resilience thinking concepts to assess the dynamics of inequality, spatial segregation, and sustainability in Chile’s capital city of Santiago.

Resilience can have desirable and undesirable consequences. Thus, resilience should not be viewed as a normative desirable goal, but as a descriptor of complex systems dynamics. From this perspective, we apply resilience thinking concepts to assess the dynamics of inequality, spatial segregation, and sustainability in Chile’s capital city of Santiago. Chile’s economy boosted since democracy was restored in 1990, but continuity of neoliberal reforms and transformations of Pinochet’s dictatorship (1973–1990) seem to have locked Chilean cities in resilient, albeit unsustainable, patterns of uneven development. Socio-economic data from Santiago shows highly resilient patterns of urban inequality and segregation from 1992 to 2009 despite democratic efforts, political agendas and discourses packed with calls for reducing poverty and inequality. We present a conceptual model based on the notion of stability landscapes to explore potential trade-offs between resilience and sustainable development. We mapped Santiago’s spatio-temporal inequality trends and explored if these patterns support an inequality-resilience stability landscape. Analysis of temporal and spatial distribution of development assets across four human development dimensions (i.e., income, education, health, democracy) revealed potential socio-political and spatial feedbacks supporting the resilience of inequality and segregation in Santiago. We argue that urban sustainability may require breaking this resilience, a process where bottom-up stressors such as social movements could play a key role.

Created2016-08-19
128248-Thumbnail Image.png
Description

In order to improve the efficiency of government spending, it is necessary for the decentralized irrigation management to gain support from local institutions. Efficient institutions take on several distinct configurations in different irrigation districts. In this research, we upgrade Tang’s (1992) framework focusing on incentives, to a framework that includes

In order to improve the efficiency of government spending, it is necessary for the decentralized irrigation management to gain support from local institutions. Efficient institutions take on several distinct configurations in different irrigation districts. In this research, we upgrade Tang’s (1992) framework focusing on incentives, to a framework that includes institutional incentives and coordination. Within the framework, we then classify 5 institutional variables: water pricing reform (P), government funding (F), coordination by administration (C), having formal monitors (M) and self-organized management (S). This article processes the data obtained through a field survey (2009–2011) in 20 of China’s southern counties, where they implement the “Small-scale Irrigation and Water Conservancy Key Counties Construction (Key Counties Construction)”, a national project supported by the central government. Next, it applies Data Envelopment Analysis (DEA) to measure the efficiency of government spending and uses Qualitative Comparative Analysis (QCA) to extract efficient institutional configurations. It concludes that there are generally three types of institutional configurations able to improve the efficiency of government spending, which are respectively: “government funding combined with coordination by administration”, “water pricing reform combined with self-organized management and coordination by administration or water pricing reform combined with self-organized management and government funding and formal monitors” and “self-organized management”. Among these, the second configuration is a mixed governance structure with multiple institutions coexisting, and this configuration occurs in the most efficient key counties. For that reason, it is viewed as the mainstream irrigation management approach, and we expect it to be the development trend in the future. Although Chinese irrigation policies are formalizing effective local institutions, they are still not sufficient. Future policies are needed to 1) promote institutions of government support for water laws in order to build stable expectations for both water user associations (WUAs) and farmers, 2) guide water pricing reform by ensuring farmers’ water rights and regulating water markets, and 3) provide opportunities for hiring professional monitors and crafting formal rules.

Created2016-02-01
128168-Thumbnail Image.png
Description

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time series for CO2 contributions from fossil fuel combustion (Cff) for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub-city source regions in the LA megacity domain when wind directions are considered.

ContributorsNewman, Sally (Author) / Xu, Xiaomei (Author) / Gurney, Kevin (Author) / Hsu, Ying Kuang (Author) / Li, King Fai (Author) / Jiang, Xun (Author) / Keeling, Ralph (Author) / Feng, Sha (Author) / O'Keeffe, Darragh (Author) / Patarasuk, Risa (Author) / Wong, Kam Weng (Author) / Rao, Preeti (Author) / Fischer, Marc L. (Author) / Yung, Yuk L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-22
128167-Thumbnail Image.png
Description

Many population centers in the American West rely on water from the Colorado River Basin, which has faced shortages in recent years that are anticipated to be exacerbated by climate change. Shortages to urban water supplies related to climate change will not be limited to cities dependent on the Colorado

Many population centers in the American West rely on water from the Colorado River Basin, which has faced shortages in recent years that are anticipated to be exacerbated by climate change. Shortages to urban water supplies related to climate change will not be limited to cities dependent on the Colorado River. Considering this, addressing sustainable water governance is timely and critical for cities, states, and regions facing supply shortages and pollution problems. Engaging in sustainability transitions of these hydro-social systems will increase the ability of such systems to meet the water needs of urban communities. In this paper, we identify historical transitions in water governance and examine their context for three sites in the Colorado River Basin (Denver, Colorado, Las Vegas, Nevada, and Phoenix, Arizona) to provide insight for intentional transitions towards sustainable, or “water sensitive” cities. The comparative historical approach employed allows us to more fully understand differences in present-day water governance decisions between the sites, identify past catalysts for transitions, and recognize emerging patterns and opportunities that may impact current and future water governance in the Colorado River Basin and beyond.

ContributorsSullivan, Abigail (Author) / White, Dave (Author) / Larson, Kelli (Author) / Wutich, Amber (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2017-05-06
127901-Thumbnail Image.png
Description

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean) carbon uptake in the north (−3.4 Pg C yr-1 (±0.5 Pg C yr-1 standard deviation), with slightly more uptake over land than over ocean), a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr-1) and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr-1) corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV) in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr[superscript −1] for the 1996–2007 period), with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr-1), the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr-1). Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr-1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over the northern land (at the continental scale), but still highly dependent on the prior flux seasonality over the ocean. Finally we provide recommendations to interpret the regional fluxes, along with the uncertainty estimates.

ContributorsPeylin, P. (Author) / Law, R. M. (Author) / Gurney, Kevin (Author) / Chevallier, F. (Author) / Jacobson, A. R. (Author) / Maki, T. (Author) / Niwa, Y. (Author) / Patra, P. K. (Author) / Peters, W. (Author) / Rayner, P. J. (Author) / Rodenbeck, C. (Author) / van der Laan-Luijkx, I. T. (Author) / Zhang, X. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-10-24
127871-Thumbnail Image.png
Description

This paper presents an analysis of methane emissions from the Los Angeles Basin at monthly timescales across a 4-year time period – from September 2011 to August 2015. Using observations acquired by a ground-based near-infrared remote sensing instrument on Mount Wilson, California, combined with atmospheric CH4–CO2 tracer–tracer correlations, we observed

This paper presents an analysis of methane emissions from the Los Angeles Basin at monthly timescales across a 4-year time period – from September 2011 to August 2015. Using observations acquired by a ground-based near-infrared remote sensing instrument on Mount Wilson, California, combined with atmospheric CH4–CO2 tracer–tracer correlations, we observed −18 to +22 % monthly variability in CH4 : CO2 from the annual mean in the Los Angeles Basin. Top-down estimates of methane emissions for the basin also exhibit significant monthly variability (−19 to +31 % from annual mean and a maximum month-to-month change of 47 %). During this period, methane emissions consistently peaked in the late summer/early fall and winter. The estimated annual methane emissions did not show a statistically significant trend over the 2011 to 2015 time period.

ContributorsWong, Clare K. (Author) / Pongetti, Thomas J. (Author) / Oda, Tom (Author) / Rao, Preeti (Author) / Gurney, Kevin (Author) / Newman, Sally (Author) / Duren, Riley M. (Author) / Miller, Charles E. (Author) / Yung, Yuk L. (Author) / Sander, Stanley P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-26