This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 41 - 50 of 800
Filtering by

Clear all filters

Description

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there exists some general mechanisms that account for the origins of such scaling behaviours in different contexts, especially in socioeconomic systems, remains an open question. We address this problem by introducing a geometric network model without free parameter, finding that both super-linear and sub-linear scaling behaviours can be simultaneously reproduced and that the scaling exponents are exclusively determined by the dimension of the Euclidean space in which the network is embedded. We implement some realistic extensions to the basic model to offer more accurate predictions for cities of various scaling behaviours and the Zipf distribution reported in the literature and observed in our empirical studies. All of the empirical results can be precisely recovered by our model with analytical predictions of all major properties. By virtue of these general findings concerning scaling behaviour, our models with simple mechanisms gain new insights into the evolution and development of complex networked systems.

ContributorsZhang, Jiang (Author) / Li, Xintong (Author) / Wang, Xinran (Author) / Wang, Wen-Xu (Author) / Wu, Lingfei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-29
Description

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO[subscript 2] emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO[subscript 2] emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

ContributorsAsefi-Najafabady, Salvi (Author) / Rayner, P. J. (Author) / Gurney, Kevin (Author) / McRobert, A. (Author) / Song, Y. (Author) / Coltin, K. (Author) / Huang, J. (Author) / Elvidge, C. (Author) / Baugh, K. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-16
Description

The purpose of this study was to examine in which way adding more indicators or a covariate influences the performance of latent class analysis (LCA). We varied the sample size (100 ≤ N ≤ 2000), number, and quality of binary indicators (between 4 and 12 indicators with conditional response probabilities

The purpose of this study was to examine in which way adding more indicators or a covariate influences the performance of latent class analysis (LCA). We varied the sample size (100 ≤ N ≤ 2000), number, and quality of binary indicators (between 4 and 12 indicators with conditional response probabilities of [0.3, 0.7], [0.2, 0.8], or [0.1, 0.9]), and the strength of covariate effects (zero, small, medium, large) in a Monte Carlo simulation study of 2- and 3-class models. The results suggested that in general, a larger sample size, more indicators, a higher quality of indicators, and a larger covariate effect lead to more converged and proper replications, as well as fewer boundary parameter estimates and less parameter bias. Furthermore, interactions among these study factors demonstrated how using more or higher quality indicators, as well as larger covariate effect size, could sometimes compensate for small sample size. Including a covariate appeared to be generally beneficial, although the covariate parameters themselves showed relatively large bias. Our results provide useful information for practitioners designing an LCA study in terms of highlighting the factors that lead to better or worse performance of LCA.

ContributorsWurpts, Ingrid Carlson (Author) / Geiser, Christian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-21
129511-Thumbnail Image.png
Description

A fundamental problem in computational biophysics is to deduce the function of a protein from the structure. Many biological macromolecules such as enzymes, molecular motors or membrane transport proteins perform their function by cycling between multiple conformational states. Understanding such conformational transitions, which typically occur on the millisecond to second

A fundamental problem in computational biophysics is to deduce the function of a protein from the structure. Many biological macromolecules such as enzymes, molecular motors or membrane transport proteins perform their function by cycling between multiple conformational states. Understanding such conformational transitions, which typically occur on the millisecond to second time scale, is central to understanding protein function. Molecular dynamics (MD) computer simulations have become an important tool to connect molecular structure to function, but equilibrium MD simulations are rarely able to sample on time scales longer than a few microseconds – orders of magnitudes shorter than the time scales of interest. A range of different simulation methods have been proposed to overcome this time-scale limitation. These include calculations of the free energy landscape and path sampling methods to directly sample transitions between known conformations. All these methods solve the problem to sample infrequently occupied but important regions of configuration space. Many path-sampling algorithms have been applied to the closed – open transition of the enzyme adenylate kinase (AdK), which undergoes a large, clamshell-like conformational transition between an open and a closed state. Here we review approaches to sample macromolecular transitions through the lens of AdK. We focus our main discussion on the current state of knowledge – both from simulations and experiments – about the transition pathways of ligand-free AdK, its energy landscape, transition rates and interactions with substrates. We conclude with a comparison of the discussed approaches with a view towards quantitative evaluation of path-sampling methods.

ContributorsSeyler, Sean (Author) / Beckstein, Oliver (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
Description

Exclusive neutral-pion electroproduction (ep → e'p'π0) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4σ/dtdQ2dxBπ and structure functions σT + εσL, σTT, and σLT as functions of t were obtained over a wide range of Q2 and xB. The data are

Exclusive neutral-pion electroproduction (ep → e'p'π0) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4σ/dtdQ2dxBπ and structure functions σT + εσL, σTT, and σLT as functions of t were obtained over a wide range of Q2 and xB. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.

ContributorsBedlinskiy, I. (Author) / Kubarovsky, V. (Author) / Niccolai, S. (Author) / Stoler, P. (Author) / Adhikari, K. P. (Author) / Anderson, M. D. (Author) / Pereira, S. Anefalos (Author) / Avakian, H. (Author) / Ball, J. (Author) / Baltzell, N. A. (Author) / Battaglieri, M. (Author) / Batourine, V. (Author) / Biselli, A. S. (Author) / Boiarinov, S. (Author) / Bono, J. (Author) / Briscoe, W. J. (Author) / Brooks, W. K. (Author) / Burkert, V. D. (Author) / Carman, D. S. (Author) / Celentano, A. (Author) / Chandavar, S. (Author) / Colaneri, L. (Author) / Cole, P. L. (Author) / Contalbrigo, M. (Author) / Cortes, O. (Author) / Crede, V. (Author) / D'Angelo, A. (Author) / Dashyan, N. (Author) / De Vita, R. (Author) / De Sanctis, E. (Author) / Deur, A. (Author) / Djalali, C. (Author) / Doughty, D. (Author) / Dupre, R. (Author) / Egiyan, H. (Author) / Ritchie, Barry (Author) / Senderovich, Igor (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-13
Description

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment,

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment, we use a utilitarian formulation of agent decision making to explore conditions that support the emergence of cooperative behavior. Our results indicate that cooperation levels are significantly lower for larger groups in contrast to the original pure strategy model. Here, defection behavior not only diminishes the public good, but also affects the expectations of group members leading conditional co-operators to change their strategies. Hence defection has a more damaging effect when decisions are based on expectations and not only pure strategies.

Created2014-07-01
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
Description

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above low-frequency background city noise. However, the ability to make such song modifications may be constrained by several morphological factors, including bill gape, size, and shape, thereby limiting the degree to which certain species can vocally adapt to urban settings. We examined the relationship between song characteristics and bill morphology in a species (the house finch, Haemorhous mexicanus) where both vocal performance and bill size are known to differ between city and rural animals.

Results: We found that bills were longer and narrower in more disturbed, urban areas. We observed an increase in minimum song frequency of urban birds, and we also found that the upper frequency limit of songs decreased in direct relation to bill morphology.

Conclusions: These findings are consistent with the hypothesis that birds with longer beaks and therefore longer vocal tracts sing songs with lower maximum frequencies because longer tubes have lower-frequency resonances. Thus, for the first time, we reveal dual constraints (one biotic, one abiotic) on the song frequency range of urban animals. Urban foraging pressures may additionally interact with the acoustic environment to shape bill traits and vocal performance.

ContributorsGiraudeau, Mathieu (Author) / Nolan, Paul M. (Author) / Black, Caitlin E. (Author) / Earl, Stevan (Author) / Hasegawa, Masaru (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-12