This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 761 - 762 of 762
Filtering by

Clear all filters

129129-Thumbnail Image.png
Description

Water availability is the major limiting factor of the functioning of deserts and grasslands and is going to be severely modified by climate change. Field manipulative experiments of precipitation represent the best way to explore cause-effect relationships between water availability and ecosystem functioning. However, there is a limited number of

Water availability is the major limiting factor of the functioning of deserts and grasslands and is going to be severely modified by climate change. Field manipulative experiments of precipitation represent the best way to explore cause-effect relationships between water availability and ecosystem functioning. However, there is a limited number of that type of studies because of logistic and cost limitations. Here, we report on a new system that alters precipitation for experimental plots from 80% reduction to 80% increase relative to ambient, that is low cost, and is fully solar powered. This two-part system consists of a rainout shelter that intercepts water and sends it to a temporary storage tank, from where a solar-powered pump then sends the water to sprinklers located in opposite corners of an irrigated plot. We tested this automated system for 5 levels of rainfall, reduction-irrigation (50–80%) and controls with N = 3. The system showed high reduction/irrigation accuracy and small effect on temperature and photosynthetically active radiation. System average cost was $228 USD per module of 2.5 m by 2.5 m and required low maintenance.

ContributorsGherardi Arbizu, Laureano (Author) / Sala, Osvaldo (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02
129126-Thumbnail Image.png
Description

We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, nðt0Þ < 1 × 10−20 cm−3, which is a “primordial” analog of the Parker

We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, nðt0Þ < 1 × 10−20 cm−3, which is a “primordial” analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived under independent assumptions. We also show how improved measurements of the PMF at different redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the gaγφE · B=4π interaction. Including the effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion field. Although the magnitude of the source is small for the PMF, it could potentially be of interest in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic microwave background photons into axions lead to gaγ ≲ 10−9 GeV−1 for the suggested PMF strength ∼10−14 G and coherence length ∼10 Mpc. Finally, we apply constraints on the neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in the presence of a PMF, and we find μν ≲ 10−16 μB.

ContributorsLong, Andrew J. (Author) / Vachaspati, Tanmay (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-05-20