This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 20
Filtering by

Clear all filters

129026-Thumbnail Image.png
Description

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies have shed light into the risk factors associated with severe

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies have shed light into the risk factors associated with severe outcomes of 2009 A/H1N1 influenza infections in different populations (e.g., [1-5]), analyses of the determinants of mortality risk spanning multiple pandemic waves and geographic regions are scarce. Between-country differences in the mortality burden of the 2009 pandemic could be linked to differences in influenza case management, underlying population health, or intrinsic differences in disease transmission [6]. Additional studies elucidating the determinants of disease severity globally are warranted to guide prevention efforts in future influenza pandemics.

In Mexico, the 2009 A/H1N1 influenza pandemic was characterized by a three-wave pattern occurring in the spring, summer, and fall of 2009 with substantial geographical heterogeneity [7]. A recent study suggests that Mexico experienced high excess mortality burden during the 2009 A/H1N1 influenza pandemic relative to other countries [6]. However, an assessment of potential factors that contributed to the relatively high pandemic death toll in Mexico are lacking. Here, we fill this gap by analyzing a large series of laboratory-confirmed A/H1N1 influenza cases, hospitalizations, and deaths monitored by the Mexican Social Security medical system during April 1 through December 31, 2009 in Mexico. In particular, we quantify the association between disease severity, hospital admission delays, and neuraminidase inhibitor use by demographic characteristics, pandemic wave, and geographic regions of Mexico.

Methods: We analyzed a large series of laboratory-confirmed pandemic A/H1N1 influenza cases from a prospective surveillance system maintained by the Mexican Social Security system, April-December 2009. We considered a spectrum of disease severity encompassing outpatient visits, hospitalizations, and deaths, and recorded demographic and geographic information on individual patients. We assessed the impact of neuraminidase inhibitor treatment and hospital admission delay (≤ > 2 days after disease onset) on the risk of death by multivariate logistic regression.

Results: Approximately 50% of all A/H1N1-positive patients received antiviral medication during the Spring and Summer 2009 pandemic waves in Mexico while only 9% of A/H1N1 cases received antiviral medications during the fall wave (P < 0.0001). After adjustment for age, gender, and geography, antiviral treatment significantly reduced the risk of death (OR = 0.52 (95% CI: 0.30, 0.90)) while longer hospital admission delays increased the risk of death by 2.8-fold (95% CI: 2.25, 3.41).

Conclusions: Our findings underscore the potential impact of decreasing admission delays and increasing antiviral use to mitigate the mortality burden of future influenza pandemics.

Created2012-04-20
128766-Thumbnail Image.png
Description

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative areas of Peru.

Methods: We used daily cases of influenza-like-illness, tests for A/H1N1 influenza virus infections, and laboratory-confirmed A/H1N1 influenza cases reported to the epidemiological surveillance system of Peru's Ministry of Health from May 1 to December 31, 2009. We analyzed the geographic spread of the pandemic waves and their association with the winter school vacation period, demographic factors, and absolute humidity. We also estimated the reproduction number and quantified the association between the winter school vacation period and the age distribution of cases.

Results: The national pandemic curve revealed a bimodal winter pandemic wave, with the first peak limited to school age children in the Lima metropolitan area, and the second peak more geographically widespread. The reproduction number was estimated at 1.6–2.2 for the Lima metropolitan area and 1.3–1.5 in the rest of Peru. We found a significant association between the timing of the school vacation period and changes in the age distribution of cases, while earlier pandemic onset was correlated with large population size. By contrast there was no association between pandemic dynamics and absolute humidity.

Conclusions: Our results indicate substantial spatial variation in pandemic patterns across Peru, with two pandemic waves of varying timing and impact by age and region. Moreover, the Peru data suggest a hierarchical transmission pattern of pandemic influenza A/H1N1 driven by large population centers. The higher reproduction number of the first pandemic wave could be explained by high contact rates among school-age children, the age group most affected during this early wave.

Created2011-06-21
128186-Thumbnail Image.png
Description

We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g

We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.

ContributorsPenton, Christopher (Author) / Gupta, Vadakattu V. S. R. (Author) / Yu, Julian (Author) / Tiedje, James M. (Author) / College of Integrative Sciences and Arts (Contributor)
Created2016-06-02
129611-Thumbnail Image.png
Description

We calculate the leading radiative corrections to the axial current in the chiral separation effect in dense QED in a magnetic field. Contrary to the conventional wisdom suggesting that the axial current should be exactly fixed by the chiral anomaly relation and is described by the topological contribution on the

We calculate the leading radiative corrections to the axial current in the chiral separation effect in dense QED in a magnetic field. Contrary to the conventional wisdom suggesting that the axial current should be exactly fixed by the chiral anomaly relation and is described by the topological contribution on the lowest Landau level in the free theory, we find in fact that the axial current receives nontrivial radiative corrections. The direct calculations performed to the linear order in the external magnetic field show that the nontrivial radiative corrections to the axial current are provided by the Fermi surface singularity in the fermion propagator at nonzero fermion density.

ContributorsShovkovy, Igor (Author) / Gorbar, E. V. (Author) / Miransky, V. A. (Author) / Wang, Xinyang (Author) / College of Integrative Sciences and Arts (Contributor)
Created2013
129612-Thumbnail Image.png
Description

We calculate the electron self-energy in a magnetized QED plasma to the leading perturbative order in the coupling constant and to the linear order in an external magnetic field. We find that the chiral asymmetry of the normal ground state of the system is characterized by two new Dirac structures.

We calculate the electron self-energy in a magnetized QED plasma to the leading perturbative order in the coupling constant and to the linear order in an external magnetic field. We find that the chiral asymmetry of the normal ground state of the system is characterized by two new Dirac structures. One of them is the familiar chiral shift previously discussed in the Nambu-Jona-Lasinio model. The other structure is new. It formally looks like that of the chiral chemical potential but is an odd function of the longitudinal component of the momentum, directed along the magnetic field. The origin of this new parity-even chiral structure is directly connected with the long-range character of the QED interaction. The form of the Fermi surface in the weak magnetic field is determined.

ContributorsShovkovy, Igor (Author) / Wang, Xinyang (Author) / Miransky, V. A. (Author) / Gorbar, E. V. (Author) / College of Integrative Sciences and Arts (Contributor)
Created2013
129622-Thumbnail Image.png
Description

The per-capita growth rate of a species is influenced by density-independent, positive and negative density-dependent factors. These factors can lead to nonlinearity with a consequence that species may process multiple nontrivial equilibria in its single state (e.g., Allee effects). This makes the study of permanence of discrete-time multi-species population models

The per-capita growth rate of a species is influenced by density-independent, positive and negative density-dependent factors. These factors can lead to nonlinearity with a consequence that species may process multiple nontrivial equilibria in its single state (e.g., Allee effects). This makes the study of permanence of discrete-time multi-species population models very challenging due to the complex boundary dynamics. In this paper, we explore the permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates for the first time. We find a simple sufficient condition for guaranteeing the permanence of the system by applying and extending the ecological concept of the relative nonlinearity to estimate systems' external Lyapunov exponents. Our method allows us to fully characterize the effects of nonlinearities in the per-capita growth functions and implies that the fluctuated populations may devastate the permanence of systems and lead to multiple attractors. These results are illustrated with specific two species competition and predator-prey models with generic nonlinear per-capita growth functions. Finally, we discuss the potential biological implications of our results.

ContributorsKang, Yun (Author) / College of Integrative Sciences and Arts (Contributor)
Created2013-10
127963-Thumbnail Image.png
Description

Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity

Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370 individual mammals representing three genera and eight species were captured in 4,800 trap nights from winter 2011 to spring 2012.

A multi-response permutation procedure was used to identify differences in small mammal community abundance and biomass by season and treatment. Rodent abundance, biomass, and richness were greater at AWS compared to control sites. Patterns of abundance and biomass were driven by the desert pocket mouse (Chaetodipus penicillatus) which was the most common capture and two times more numerous at AWS compared to controls. Vegetation characteristics, explored using principal components analysis, were similar between AWS and controls. Two species that prefer vegetation structure, Bailey’s pocket mouse (C. baileyi) and white-throated woodrat (Neotoma albigula), had greater abundances and biomass near AWS and were associated with habitat having high cactus density. Although small mammals do not drink free-water, perhaps higher abundances of some species of desert rodents at AWS could be related to artificial structure associated with construction or other resources. Compared to the 30-year average of precipitation for the area, the period of our study occurred during a dry winter. During dry periods, perhaps AWS provide resources to rodents related to moisture.

ContributorsSwitalski, Aaron (Author) / Bateman, Heather (Author) / College of Integrative Sciences and Arts (Contributor)
Created2017-11-10
128625-Thumbnail Image.png
Description

A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of

A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of rarity-weighted richness (HRR)–sites that efficiently represent species–for birds across EU countries, and to explore whether HRR are well represented by the Natura 2000 network. Natura 2000 is an evolving network of PAs that seeks to conserve biodiversity through the persistence of the most patrimonial species and habitats across Europe. This network includes Sites of Community Importance (SCI) and Special Areas of Conservation (SAC), where the latter regulated the designation of Special Protected Areas (SPA). Distribution maps for 416 bird species and complementarity-based approaches were used to map geographical patterns of rarity-weighted richness (RWR) and HRR for birds. We used species accumulation index to evaluate whether RWR was efficient surrogates to identify HRRs for birds. The results of our analysis support the proposition that prioritizing sites in order of RWR is a reliable way to identify sites that efficiently represent birds. HRRs were concentrated in the Mediterranean Basin and alpine and boreal biogeographical regions of northern Europe. The cells with high RWR values did not correspond to cells where Natura 2000 was present. We suggest that patterns of RWR could become a focus for conservation biogeography. Our analysis demonstrates that identifying HRR is a robust approach for prioritizing management actions, and reveals the need for more conservation actions, especially on HRR.

Created2017-04-05
129092-Thumbnail Image.png
Description

One argument used by detractors of human embryonic stem cell research (hESCR) invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should

One argument used by detractors of human embryonic stem cell research (hESCR) invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should not be disaggregated to obtain pluripotent stem cells for hESCR. Given that human embryos are Kantian persons from the time of their conception, killing them to obtain their cells for research fails to treat them as ends in themselves.

This argument assumes two points that are rather contentious given a Kantian framework. First, the argument assumes that when Kant maintains that humanity must be treated as an end in itself, he means to argue that all members of the species Homo sapiens must be treated as ends in themselves; that is, that Kant regards personhood as co-extensive with belonging to the species Homo sapiens. Second, the argument assumes that the event of conception is causally responsible for the genesis of a Kantian person and that, therefore, an embryo is a Kantian person from the time of its conception.

In this paper, I will present challenges against these two assumptions by engaging in an exegetical study of some of Kant's works. First, I will illustrate that Kant did not use the term "humanity" to denote a biological species, but rather the capacity to set ends according to reason. Second, I will illustrate that it is difficult given a Kantian framework to denote conception (indeed any biological event) as causally responsible for the creation of a person. Kant ascribed to a dualistic view of human agency, and personhood, according to him, was derived from the supersensible capacity for reason. To argue that a Kantian person is generated due to the event of conception ignores Kant's insistence in various aspects of his work that it is not possible to understand the generation of a person qua a physical operation. Finally, I will end the paper by drawing from Allen Wood's work in Kantian philosophy in order to generate an argument in favor of hESCR.

ContributorsManning, Bertha (Author) / College of Integrative Sciences and Arts (Contributor)
Created2008-01-31
128223-Thumbnail Image.png
Description

Since nitrogen (N) is often limiting in permafrost soils, we investigated the N[subscript 2]-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were

Since nitrogen (N) is often limiting in permafrost soils, we investigated the N[subscript 2]-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlated to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group III nifH-harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N[subscript 2]-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites.

ContributorsPenton, Christopher (Author) / Yang, Caiyun (Author) / Wu, Liyou (Author) / Wang, Qiong (Author) / Zhang, Jin (Author) / Liu, Feifei (Author) / Qin, Yujia (Author) / Deng, Ye (Author) / Hemme, Christopher L. (Author) / Zheng, Tianling (Author) / Schuur, Edward A. G. (Author) / Tiedje, James (Author) / Zhou, Jizhong (Author) / College of Integrative Sciences and Arts (Contributor)
Created2016-11-24