This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 28
Filtering by

Clear all filters

141484-Thumbnail Image.png
Description

Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults

Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

ContributorsHruschka, Daniel (Author) / Hadley, Craig (Author) / Brewis, Alexandra (Author) / Stojanowski, Christopher (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-27
141490-Thumbnail Image.png
Description

Background: The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the recruitment,

Background: The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the recruitment, data collection, and data analytic protocols for the SPARC (Social impact of Physical Activity and nutRition in College) study, a longitudinal examination of the mechanisms by which friends and friendship networks influence nutrition and physical activity behaviors and weight gain in the transition to college life.

Methods: The SPARC study aims to follow 1450 university freshmen from a large university over an academic year, collecting data on multiple aspects of friends and friendship networks. Integrating multiple types of data related to student lives, ecological momentary assessments (EMAs) are administered via a cell phone application, devilSPARC. EMAs collected in four 1-week periods (a total of 4 EMA waves) are integrated with linked data from web-based surveys and anthropometric measurements conducted at four times points (for a total of eight data collection periods including EMAs, separated by ~1 month). University databases will provide student card data, allowing integration of both time-dated data on food purchasing, use of physical activity venues, and geographical information system (GIS) locations of these activities relative to other students in their social networks.

Discussion: Findings are intended to guide the development of more effective interventions to enhance behaviors among college students that protect against weight gain during college.

ContributorsBruening, Meg (Author) / Ohri-Vachaspati, Punam (Author) / Brewis, Alexandra (Author) / Laska, Melissa (Author) / Todd, Michael (Author) / Hruschka, Daniel (Author) / Schaefer, David (Author) / Whisner, Corrie (Author) / Dunton, Genevieve (Author) / College of Health Solutions (Contributor)
Created2016-08-30
127853-Thumbnail Image.png
Description

Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of

Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field.

ContributorsKelbauskas, Laimonas (Author) / Shetty, Rishabh Manoj (Author) / Cao, Bin (Author) / Wang, Kuo-Chen (Author) / Smith, Dean (Author) / Wang, Hong (Author) / Chao, Shi-Hui (Author) / Gangaraju, Sandhya (Author) / Ashcroft, Brian (Author) / Kritzer, Margaret (Author) / Glenn, Honor (Author) / Johnson, Roger (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2017-12-06
128516-Thumbnail Image.png
Description

Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble

Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers.

ContributorsKelbauskas, Laimonas (Author) / Glenn, Honor (Author) / Anderson, Clifford (Author) / Messner, Jacob (Author) / Lee, Kristen (Author) / Song, Ganquan (Author) / Houkal, Jeff (Author) / Su, Fengyu (Author) / Zhang, Liqiang (Author) / Tian, Yanqing (Author) / Wang, Hong (Author) / Bussey, Kimberly (Author) / Johnson, Roger (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2017-03-28
128490-Thumbnail Image.png
Description

The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an ‘epigenetic’ drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated

The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an ‘epigenetic’ drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat’s differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.

ContributorsNandakumar, Vivek (Author) / Hansen Katdare, Nanna (Author) / Glenn, Honor (Author) / Han, Jessica (Author) / Helland, Stephanie (Author) / Hernandez, Kathryn (Author) / Senechal, Patti (Author) / Johnson, Roger (Author) / Bussey, Kimberly J. (Author) / Meldrum, Deirdre (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-08-09
129540-Thumbnail Image.png
Description

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the moderation effect of ambiguity tolerance on the link of environmental and self explorations with career indecision. Results supported the significance of ambiguity tolerance with respect to career indecision, finding that it directly predicted general indecisiveness, dysfunctional beliefs, lack of information, and inconsistent information, and moderated the prediction of environmental exploration on inconsistent information. The implications of this study are discussed and suggestions for future research are provided.

ContributorsXu, Hui (Author) / Tracey, Terence (Author) / College of Integrative Sciences and Arts (Contributor)
Created2014-08-01
129058-Thumbnail Image.png
Description

Background: Improving perinatal health is the key to achieving the Millennium Development Goal for child survival. Recently, several reviews suggest that scaling up available effective perinatal interventions in an integrated approach can substantially reduce the stillbirth and neonatal death rates worldwide. We evaluated the effect of packaged interventions given in pregnancy,

Background: Improving perinatal health is the key to achieving the Millennium Development Goal for child survival. Recently, several reviews suggest that scaling up available effective perinatal interventions in an integrated approach can substantially reduce the stillbirth and neonatal death rates worldwide. We evaluated the effect of packaged interventions given in pregnancy, delivery and post-partum periods through integration of community- and facility-based services on perinatal mortality.

Methods: This study took advantage of an ongoing health and demographic surveillance system (HDSS) and a new Maternal, Neonatal and Child Health (MNCH) Project initiated in 2007 in Matlab, Bangladesh in half (intervention area) of the HDSS area. In the other half, women received usual care through the government health system (comparison area). The MNCH Project strengthened ongoing maternal and child health services as well as added new services. The intervention followed a continuum of care model for pregnancy, intrapartum, and post-natal periods by improving established links between community- and facility-based services. With a separate pre-post samples design, we compared the perinatal mortality rates between two periods--before (2005-2006) and after (2008-2009) implementation of MNCH interventions. We also evaluated the difference-of-differences in perinatal mortality between intervention and comparison areas.

Results: Antenatal coverage, facility delivery and cesarean section rates were significantly higher in the post- intervention period in comparison with the period before intervention. In the intervention area, the odds of perinatal mortality decreased by 36% between the pre-intervention and post-intervention periods (odds ratio: 0.64; 95% confidence intervals: 0.52-0.78). The reduction in the intervention area was also significant relative to the reduction in the comparison area (OR 0.73, 95% CI: 0.56-0.95; P = 0.018).

Conclusion: The continuum of care approach provided through the integration of service delivery modes decreased the perinatal mortality rate within a short period of time. Further testing of this model is warranted within the government health system in Bangladesh and other low-income countries.

ContributorsRahman, Anisur (Author) / Moran, Allisyn (Author) / Pervin, Jesmin (Author) / Rahman, Aminur (Author) / Rahman, Monjur (Author) / Yeasmin, Sharifa (Author) / Begum, Hosneara (Author) / Rashid, Harunor (Author) / Yunus, Mohammad (Author) / Hruschka, Daniel (Author) / Arifeen, Shams E. (Author) / Streatfield, Peter K. (Author) / Sibley, Lynn (Author) / Bhuiya, Abbas (Author) / Koblinsky, Marge (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-12-10
128771-Thumbnail Image.png
Description

Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the

Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE.

ContributorsWang, Jiangxin (Author) / Shi, Xu (Author) / Johnson, Roger (Author) / Kelbauskas, Laimonas (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-08
129686-Thumbnail Image.png
Description

Much research has established reliable cross-population differences in motivations to invest in one's in-group. We compare two current historical-evolutionary hypotheses for this variation based on (1) effective large-scale institutions and (2) pathogen threats by analyzing cross-national differences (N = 122) in in-group preferences measured in three ways. We find that

Much research has established reliable cross-population differences in motivations to invest in one's in-group. We compare two current historical-evolutionary hypotheses for this variation based on (1) effective large-scale institutions and (2) pathogen threats by analyzing cross-national differences (N = 122) in in-group preferences measured in three ways. We find that the effectiveness of government institutions correlates with favoring in-group members, even when controlling for pathogen stress and world region, assessing reverse causality, and providing a check on endogeneity with an instrumental variable analysis. Conversely, pathogen stress shows inconsistent associations with in-group favoritism when controlling for government effectiveness. Moreover, pathogen stress shows little to no association with in-group favoritism within major world regions whereas government effectiveness does. These results suggest that variation in in-group preferences across contemporary nation-states is more consistent with a generalized response to institutions that meet basic needs rather than an evolved response dedicated to pathogens.

ContributorsHruschka, Daniel (Author) / Henrich, Joseph (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-05-21