This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 28
Filtering by

Clear all filters

Description

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO[subscript 2] emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO[subscript 2] emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

ContributorsAsefi-Najafabady, Salvi (Author) / Rayner, P. J. (Author) / Gurney, Kevin (Author) / McRobert, A. (Author) / Song, Y. (Author) / Coltin, K. (Author) / Huang, J. (Author) / Elvidge, C. (Author) / Baugh, K. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-16
128168-Thumbnail Image.png
Description

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time series for CO2 contributions from fossil fuel combustion (Cff) for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub-city source regions in the LA megacity domain when wind directions are considered.

ContributorsNewman, Sally (Author) / Xu, Xiaomei (Author) / Gurney, Kevin (Author) / Hsu, Ying Kuang (Author) / Li, King Fai (Author) / Jiang, Xun (Author) / Keeling, Ralph (Author) / Feng, Sha (Author) / O'Keeffe, Darragh (Author) / Patarasuk, Risa (Author) / Wong, Kam Weng (Author) / Rao, Preeti (Author) / Fischer, Marc L. (Author) / Yung, Yuk L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-22
127901-Thumbnail Image.png
Description

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean) carbon uptake in the north (−3.4 Pg C yr-1 (±0.5 Pg C yr-1 standard deviation), with slightly more uptake over land than over ocean), a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr-1) and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr-1) corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV) in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr[superscript −1] for the 1996–2007 period), with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr-1), the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr-1). Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr-1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over the northern land (at the continental scale), but still highly dependent on the prior flux seasonality over the ocean. Finally we provide recommendations to interpret the regional fluxes, along with the uncertainty estimates.

ContributorsPeylin, P. (Author) / Law, R. M. (Author) / Gurney, Kevin (Author) / Chevallier, F. (Author) / Jacobson, A. R. (Author) / Maki, T. (Author) / Niwa, Y. (Author) / Patra, P. K. (Author) / Peters, W. (Author) / Rayner, P. J. (Author) / Rodenbeck, C. (Author) / van der Laan-Luijkx, I. T. (Author) / Zhang, X. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-10-24
127871-Thumbnail Image.png
Description

This paper presents an analysis of methane emissions from the Los Angeles Basin at monthly timescales across a 4-year time period – from September 2011 to August 2015. Using observations acquired by a ground-based near-infrared remote sensing instrument on Mount Wilson, California, combined with atmospheric CH4–CO2 tracer–tracer correlations, we observed

This paper presents an analysis of methane emissions from the Los Angeles Basin at monthly timescales across a 4-year time period – from September 2011 to August 2015. Using observations acquired by a ground-based near-infrared remote sensing instrument on Mount Wilson, California, combined with atmospheric CH4–CO2 tracer–tracer correlations, we observed −18 to +22 % monthly variability in CH4 : CO2 from the annual mean in the Los Angeles Basin. Top-down estimates of methane emissions for the basin also exhibit significant monthly variability (−19 to +31 % from annual mean and a maximum month-to-month change of 47 %). During this period, methane emissions consistently peaked in the late summer/early fall and winter. The estimated annual methane emissions did not show a statistically significant trend over the 2011 to 2015 time period.

ContributorsWong, Clare K. (Author) / Pongetti, Thomas J. (Author) / Oda, Tom (Author) / Rao, Preeti (Author) / Gurney, Kevin (Author) / Newman, Sally (Author) / Duren, Riley M. (Author) / Miller, Charles E. (Author) / Yung, Yuk L. (Author) / Sander, Stanley P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-26
129540-Thumbnail Image.png
Description

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the moderation effect of ambiguity tolerance on the link of environmental and self explorations with career indecision. Results supported the significance of ambiguity tolerance with respect to career indecision, finding that it directly predicted general indecisiveness, dysfunctional beliefs, lack of information, and inconsistent information, and moderated the prediction of environmental exploration on inconsistent information. The implications of this study are discussed and suggestions for future research are provided.

ContributorsXu, Hui (Author) / Tracey, Terence (Author) / College of Integrative Sciences and Arts (Contributor)
Created2014-08-01
129687-Thumbnail Image.png
Description

Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA,

Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model - Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to similar to 50% of the observed CO2 enhancement overnight, and similar to 100% of the enhancement near midday. This suggests that sufficiently accurate total column CO2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity.

ContributorsNewman, S. (Author) / Jeong, S. (Author) / Fischer, M.L. (Author) / Xu, X. (Author) / Haman, C.L. (Author) / Lefer, B. (Author) / Alvarez, S. (Author) / Rappenglueck, B. (Author) / Kort, E.A. (Author) / Andrews, A. E. (Author) / Peischl, J. (Author) / Gurney, Kevin (Author) / Miller, C.E. (Author) / Yung, Y.L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-04-26
128886-Thumbnail Image.png
Description

Species turnover or β diversity is a conceptually attractive surrogate for conservation planning. However, there has been only 1 attempt to determine how well sites selected to maximize β diversity represent species, and that test was done at a scale too coarse (2,500 km2 sites) to inform most conservation decisions.

Species turnover or β diversity is a conceptually attractive surrogate for conservation planning. However, there has been only 1 attempt to determine how well sites selected to maximize β diversity represent species, and that test was done at a scale too coarse (2,500 km2 sites) to inform most conservation decisions. We used 8 plant datasets, 3 bird datasets, and 1 mammal dataset to evaluate whether sites selected to span β diversity will efficiently represent species at finer scale (sites sizes < 1 ha to 625 km2). We used ordinations to characterize dissimilarity in species assemblages (β diversity) among plots (inventory data) or among grid cells (atlas data). We then selected sites to maximize β diversity and used the Species Accumulation Index, SAI, to evaluate how efficiently the surrogate (selecting sites for maximum β diversity) represented species in the same taxon. Across all 12 datasets, sites selected for maximum β diversity represented species with a median efficiency of 24% (i.e., the surrogate was 24% more effective than random selection of sites), and an interquartile range of 4% to 41% efficiency. β diversity was a better surrogate for bird datasets than for plant datasets, and for atlas datasets with 10-km to 14-km grid cells than for atlas datasets with 25-km grid cells. We conclude that β diversity is more than a mere descriptor of how species are distributed on the landscape; in particular β diversity might be useful to maximize the complementarity of a set of sites. Because we tested only within-taxon surrogacy, our results do not prove that β diversity is useful for conservation planning. But our results do justify further investigation to identify the circumstances in which β diversity performs well, and to evaluate it as a cross-taxon surrogate.

Created2016-03-04
128625-Thumbnail Image.png
Description

A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of

A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of rarity-weighted richness (HRR)–sites that efficiently represent species–for birds across EU countries, and to explore whether HRR are well represented by the Natura 2000 network. Natura 2000 is an evolving network of PAs that seeks to conserve biodiversity through the persistence of the most patrimonial species and habitats across Europe. This network includes Sites of Community Importance (SCI) and Special Areas of Conservation (SAC), where the latter regulated the designation of Special Protected Areas (SPA). Distribution maps for 416 bird species and complementarity-based approaches were used to map geographical patterns of rarity-weighted richness (RWR) and HRR for birds. We used species accumulation index to evaluate whether RWR was efficient surrogates to identify HRRs for birds. The results of our analysis support the proposition that prioritizing sites in order of RWR is a reliable way to identify sites that efficiently represent birds. HRRs were concentrated in the Mediterranean Basin and alpine and boreal biogeographical regions of northern Europe. The cells with high RWR values did not correspond to cells where Natura 2000 was present. We suggest that patterns of RWR could become a focus for conservation biogeography. Our analysis demonstrates that identifying HRR is a robust approach for prioritizing management actions, and reveals the need for more conservation actions, especially on HRR.

Created2017-04-05
129478-Thumbnail Image.png
Description

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Regridding of fossil fuel CO2 emissions (FFCO2) from fine to coarse grids to enable atmospheric transport simulations can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. For example, emissions originally emanating from the land are emitted from a grid cell for which the vertical mixing reflects the roughness and/or surface energy exchange of an ocean surface. We test this potential "dynamical inconsistency" by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are as follows: (1) a commonly used method that allocates emissions to grid cells with no attempt to ensure dynamical consistency with atmospheric transport and (2) an improved method that reallocates emissions to grid cells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 TgC grid cell-1 yr-1 (−3.39 kgC m-2 yr-1) to +30.0 TgC grid cell-1 yr-1 (+2.6 kgC m-2 yr-1) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency.

ContributorsZhang, X. (Author) / Gurney, Kevin (Author) / Rayner, P. (Author) / Liu, Y. (Author) / Asefi-Najafabady, Salvi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129092-Thumbnail Image.png
Description

One argument used by detractors of human embryonic stem cell research (hESCR) invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should

One argument used by detractors of human embryonic stem cell research (hESCR) invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should not be disaggregated to obtain pluripotent stem cells for hESCR. Given that human embryos are Kantian persons from the time of their conception, killing them to obtain their cells for research fails to treat them as ends in themselves.

This argument assumes two points that are rather contentious given a Kantian framework. First, the argument assumes that when Kant maintains that humanity must be treated as an end in itself, he means to argue that all members of the species Homo sapiens must be treated as ends in themselves; that is, that Kant regards personhood as co-extensive with belonging to the species Homo sapiens. Second, the argument assumes that the event of conception is causally responsible for the genesis of a Kantian person and that, therefore, an embryo is a Kantian person from the time of its conception.

In this paper, I will present challenges against these two assumptions by engaging in an exegetical study of some of Kant's works. First, I will illustrate that Kant did not use the term "humanity" to denote a biological species, but rather the capacity to set ends according to reason. Second, I will illustrate that it is difficult given a Kantian framework to denote conception (indeed any biological event) as causally responsible for the creation of a person. Kant ascribed to a dualistic view of human agency, and personhood, according to him, was derived from the supersensible capacity for reason. To argue that a Kantian person is generated due to the event of conception ignores Kant's insistence in various aspects of his work that it is not possible to understand the generation of a person qua a physical operation. Finally, I will end the paper by drawing from Allen Wood's work in Kantian philosophy in order to generate an argument in favor of hESCR.

ContributorsManning, Bertha (Author) / College of Integrative Sciences and Arts (Contributor)
Created2008-01-31