This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 34
Filtering by

Clear all filters

129586-Thumbnail Image.png
Description

Recently fabricated two-dimensional phosphorene crystal structures have demonstrated great potential in applications of electronics. In this paper, strain effect on the electronic band structure of phosphorene was studied using first-principles methods including density functional theory (DFT) and hybrid functionals. It was found that phosphorene can withstand a tensile stress and

Recently fabricated two-dimensional phosphorene crystal structures have demonstrated great potential in applications of electronics. In this paper, strain effect on the electronic band structure of phosphorene was studied using first-principles methods including density functional theory (DFT) and hybrid functionals. It was found that phosphorene can withstand a tensile stress and strain up to 10 N/m and 30%, respectively. The band gap of phosphorene experiences a direct-indirect-direct transition when axial strain is applied. A moderate −2% compression in the zigzag direction can trigger this gap transition. With sufficient expansion (+11.3%) or compression (−10.2% strains), the gap can be tuned from indirect to direct again. Five strain zones with distinct electronic band structure were identified, and the critical strains for the zone boundaries were determined. Although the DFT method is known to underestimate band gap of semiconductors, it was proven to correctly predict the strain effect on the electronic properties with validation from a hybrid functional method in this work. The origin of the gap transition was revealed, and a general mechanism was developed to explain energy shifts with strain according to the bond nature of near-band-edge electronic orbitals. Effective masses of carriers in the armchair direction are an order of magnitude smaller than that of the zigzag axis, indicating that the armchair direction is favored for carrier transport. In addition, the effective masses can be dramatically tuned by strain, in which its sharp jump/drop occurs at the zone boundaries of the direct-indirect gap transition.

ContributorsPeng, Xihong (Author) / Wei, Qun (Author) / Copple, Andrew (Author) / College of Integrative Sciences and Arts (Contributor)
Created2014-08-04
129540-Thumbnail Image.png
Description

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the moderation effect of ambiguity tolerance on the link of environmental and self explorations with career indecision. Results supported the significance of ambiguity tolerance with respect to career indecision, finding that it directly predicted general indecisiveness, dysfunctional beliefs, lack of information, and inconsistent information, and moderated the prediction of environmental exploration on inconsistent information. The implications of this study are discussed and suggestions for future research are provided.

ContributorsXu, Hui (Author) / Tracey, Terence (Author) / College of Integrative Sciences and Arts (Contributor)
Created2014-08-01
129370-Thumbnail Image.png
Description

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species.

ContributorsSchrader, Lukas (Author) / Kim, Jay W. (Author) / Ence, Daniel (Author) / Zimin, Aleksey (Author) / Klein, Antonia (Author) / Wyschetzki, Katharina (Author) / Weichselgartner, Tobias (Author) / Kemena, Carsten (Author) / Stoekl, Johannes (Author) / Schultner, Eva (Author) / Wurm, Yannick (Author) / Smith, Christopher D. (Author) / Yandell, Mark (Author) / Heinze, Juergen (Author) / Gadau, Juergen (Author) / Oettler, Jan (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129256-Thumbnail Image.png
Description

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as an effective method to reduce temperature and energy consumption in cities, its impacts on environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a set of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-07-01
129257-Thumbnail Image.png
Description

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we develop a stochastic algorithm to estimate view factors between canyon facets in the presence of shade trees based on Monte Carlo simulation, where an analytical formulation is inhibited by the complex geometry. The model is validated against analytical solutions of benchmark radiative problems as well as field measurements in real street canyons. In conjunction with the matrix method resolving infinite number of reflections, the proposed model is capable of predicting the radiative exchange inside the street canyon with good accuracy. Modeling of transient evolution of thermal filed inside the street canyon using the proposed method demonstrate the potential of shade trees in mitigating canyon surface temperatures as well as saving of building energy use. This new numerical framework also deepens our insight into the fundamental physics of radiative heat transfer and surface energy balance for urban climate modeling.

ContributorsWang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
128968-Thumbnail Image.png
Description

Background: Omnivorous diets are high in arachidonic acid (AA) compared to vegetarian diets. Research shows that high intakes of AA promote changes in brain that can disturb mood. Omnivores who eat fish regularly increase their intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fats that oppose the negative effects of

Background: Omnivorous diets are high in arachidonic acid (AA) compared to vegetarian diets. Research shows that high intakes of AA promote changes in brain that can disturb mood. Omnivores who eat fish regularly increase their intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fats that oppose the negative effects of AA in vivo. In a recent cross-sectional study, omnivores reported significantly worse mood than vegetarians despite higher intakes of EPA and DHA. This study investigated the impact of restricting meat, fish, and poultry on mood.

Findings: Thirty-nine omnivores were randomly assigned to a control group consuming meat, fish, and poultry daily (OMN); a group consuming fish 3-4 times weekly but avoiding meat and poultry (FISH), or a vegetarian group avoiding meat, fish, and poultry (VEG). At baseline and after two weeks, participants completed a food frequency questionnaire, the Profile of Mood States questionnaire and the Depression Anxiety and Stress Scales. After the diet intervention, VEG participants reduced their EPA, DHA, and AA intakes, while FISH participants increased their EPA and DHA intakes. Mood scores were unchanged for OMN or FISH participants, but several mood scores for VEG participants improved significantly after two weeks.

Conclusions: Restricting meat, fish, and poultry improved some domains of short-term mood state in modern omnivores. To our knowledge, this is the first trial to examine the impact of restricting meat, fish, and poultry on mood state in omnivores.

ContributorsBeezhold, Bonnie L. (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2012-02-14
128947-Thumbnail Image.png
Description

Background: The physical health status of vegetarians has been extensively reported, but there is limited research regarding the mental health status of vegetarians, particularly with regard to mood. Vegetarian diets exclude fish, the major dietary source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), critical regulators of brain cell structure and

Background: The physical health status of vegetarians has been extensively reported, but there is limited research regarding the mental health status of vegetarians, particularly with regard to mood. Vegetarian diets exclude fish, the major dietary source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), critical regulators of brain cell structure and function. Omnivorous diets low in EPA and DHA are linked to impaired mood states in observational and experimental studies.

Methods: We examined associations between mood state and polyunsaturated fatty acid intake as a result of adherence to a vegetarian or omnivorous diet in a cross-sectional study of 138 healthy Seventh Day Adventist men and women residing in the Southwest. Participants completed a quantitative food frequency questionnaire, Depression Anxiety Stress Scale (DASS), and Profile of Mood States (POMS) questionnaires.

Results: Vegetarians (VEG:n = 60) reported significantly less negative emotion than omnivores (OMN:n = 78) as measured by both mean total DASS and POMS scores (8.32 ± 0.88 vs 17.51 ± 1.88, p = .000 and 0.10 ± 1.99 vs 15.33 ± 3.10, p = .007, respectively). VEG reported significantly lower mean intakes of EPA (p < .001), DHA (p < .001), as well as the omega-6 fatty acid, arachidonic acid (AA; p < .001), and reported higher mean intakes of shorter-chain α-linolenic acid (p < .001) and linoleic acid (p < .001) than OMN. Mean total DASS and POMS scores were positively related to mean intakes of EPA (p < 0.05), DHA (p < 0.05), and AA (p < 0.05), and inversely related to intakes of ALA (p < 0.05), and LA (p < 0.05), indicating that participants with low intakes of EPA, DHA, and AA and high intakes of ALA and LA had better mood.

Conclusions: The vegetarian diet profile does not appear to adversely affect mood despite low intake of long-chain omega-3 fatty acids.

ContributorsBeezhold, Bonnie (Author) / Johnston, Carol (Author) / Daigle, Deanna (Author) / College of Health Solutions (Contributor)
Created2010-06-01
129059-Thumbnail Image.png
Description

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9 kg/m2), the preload (isoenergetic peanut or grain bar with water, or water alone) was followed after 60 min with ingestion of a standardized glycemic test meal. Satiety and blood glucose were assessed immediately prior to the preload and to the test meal, and for two hours postmeal at 30-min intervals. In the parallel-arm, randomized trial (n = 44; 40.5 ± 1.6 y, 31.8 ± 0.9 kg/m2), the peanut or grain bar preload was consumed one hour prior to the evening meal for eight weeks. Body mass was measured at 2-week intervals, and secondary endpoints included blood hemoglobin A1c and energy intake as assessed by 3-d diet records collected at pre-trial and trial weeks 1 and 8.

Results: Satiety was elevated in the postprandial period following grain bar ingestion in comparison to peanut or water ingestion (p = 0.001, repeated-measures ANOVA). Blood glucose was elevated one hour after ingestion of the grain bar as compared to the peanut or water treatments; yet, total glycemia did not vary between treatments in the two hour postprandial period. In the 8-week trial, body mass was reduced for the grain bar versus peanut groups after eight weeks (−1.3 ± 0.4 kg versus −0.2 ± 0.3 kg, p = 0.033, analysis of covariance). Energy intake was reduced by 458 kcal/d in the first week of the trial for the grain bar group as compared to the peanut group (p = 0.118). Hemoglobin A1c changed significantly between groups during the trial (−0.25 ± 0.07% and −0.18 ± 0.12% for the grain bar and peanut groups respectively, p = 0.001).

Conclusions: Compared to an isoenergetic peanut preload, consumption of a grain bar preload one hour prior to a standardized meal significantly raised postmeal satiety. Moreover, consumption of the grain bar prior to the evening meal was associated with significant weight loss over time suggesting that glycemic carbohydrate ingestion prior to meals may be a weight management strategy.

ContributorsJohnston, Carol (Author) / Catherine, Trier (Author) / Fleming, Katie (Author) / College of Health Solutions (Contributor)
Created2013-03-27
Description

We present a phylogeographic study of at least six reproductively isolated lineages of new world harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: Four of the identified lineages show genetic caste determination (GCD) and are divided into

We present a phylogeographic study of at least six reproductively isolated lineages of new world harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: Four of the identified lineages show genetic caste determination (GCD) and are divided into two pairs. Each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because their GCD requires interlineage matings for the production of F1 hybrid workers, and intralineage matings are required to produce queens. This GCD system maintains genetic isolation among these interdependent lineages, while simultaneously requiring co-expansion and emigration as their distributions have changed over time. It has also been demonstrated that three of these four GCD lineages have undergone historical hybridization, but the narrower sampling range of previous studies has left questions on the hybrid parentage, breadth, and age of these groups. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and hypotheses and to plan future inquiries in a more complete historical biogeographic context. Using mitochondrial DNA sequences sampled across most of the morphospecies’ ranges in the U.S.A. and Mexico, we conducted a detailed phylogeographic study. Remarkably, our results indicate that one of the GCD lineage pairs has experienced a dramatic range expansion, despite the genetic load and fitness costs of the GCD system. Our analyses also reveal a complex pattern of vicariance and dispersal in Pogonomyrmex harvester ants that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid-adapted taxa in North America.

ContributorsMott, Brendon (Author) / Gadau, Juergen (Author) / Anderson, Kirk E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-01
129181-Thumbnail Image.png
Description

Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on

Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on social Hymenoptera. Phylogenetic reconstruction revealed that the insect desaturases represent an ancient gene family characterized by eight subfamilies that differ strongly in their degree of conservation and frequency of gene gain and loss. Analyses of genomic organization showed that five of these subfamilies are represented in a highly microsyntenic region conserved across holometabolous insect taxa, indicating an ancestral expansion during early insect evolution. In three subfamilies, ants exhibit particularly large expansions of genes. Despite these expansions, however, selection analyses showed that desaturase genes in all insect lineages are predominantly undergoing strong purifying selection. Finally, for three expanded subfamilies, we show that ants exhibit variation in gene expression between species, and more importantly, between sexes and castes within species. This suggests functional differentiation of these genes and a role in the regulation of reproductive division of labor in ants. The dynamic pattern of gene gain and loss of acyl-CoA desaturases in ants may reflect changes in response to ecological diversification and an increased demand for chemical signal variability. This may provide an example of how gene family expansions can contribute to lineage-specific adaptations through structural and regulatory changes acting in concert to produce new adaptive phenotypes.

ContributorsHelmkampf, Martin (Author) / Cash, Elizabeth (Author) / Gadau, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-01