This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 150
Filtering by

Clear all filters

129551-Thumbnail Image.png
Description

National and state organizations have developed policies calling upon afterschool programs (ASPs, 3–6 pm) to serve a fruit or vegetable (FV) each day for snack, while eliminating foods and beverages high in added-sugars, and to ensure children accumulate a minimum of 30 min/d of moderate-to-vigorous physical activity (MVPA). Few efficacious

National and state organizations have developed policies calling upon afterschool programs (ASPs, 3–6 pm) to serve a fruit or vegetable (FV) each day for snack, while eliminating foods and beverages high in added-sugars, and to ensure children accumulate a minimum of 30 min/d of moderate-to-vigorous physical activity (MVPA). Few efficacious and cost-effective strategies exist to assist ASP providers in achieving these important public health goals. This paper reports on the design and conceptual framework of Making Healthy Eating and Physical Activity (HEPA) Policy Practice in ASPs, a 3-year group randomized controlled trial testing the effectiveness of strategies designed to improve snacks served and increase MVPA in children attending community-based ASPs. Twenty ASPs, serving over 1800 children (6–12 years) will be enrolled and match-paired based on enrollment size, average daily min/d MVPA, and days/week FV served, with ASPs randomized after baseline data collection to immediate intervention or a 1-year delayed group. The framework employed, STEPs (Strategies To Enhance Practice), focuses on intentional programming of HEPA in each ASPs' daily schedule, and includes a grocery store partnership to reduce price barriers to purchasing FV, professional development training to promote physical activity to develop core physical activity competencies, as well as ongoing technical support/assistance. Primary outcome measures include children's accelerometry-derived MVPA and time spend sedentary while attending an ASP, direct observation of staff HEPA promoting and inhibiting behaviors, types of snacks served, and child consumption of snacks, as well as, cost of snacks via receipts and detailed accounting of intervention delivery costs to estimate cost-effectiveness.

ContributorsBeets, Michael W. (Author) / Weaver, R. Glenn (Author) / Turner-McGrievy, Gabrielle (Author) / Huberty, Jennifer (Author) / Ward, Dianne S. (Author) / Freedman, Darcy A. (Author) / Saunders, Ruth (Author) / Pate, Russell R. (Author) / Beighle, Aaron (Author) / Hutto, Brent (Author) / Moore, Justin B. (Author) / College of Health Solutions (Contributor)
Created2014-07-01
129556-Thumbnail Image.png
Description

Dental microwear has been shown to reflect diet in a broad variety of fossil mammals. Recent studies have suggested that differences in microwear texture attributes between samples may also reflect environmental abrasive loads. Here, we examine dental microwear textures on the incisors of shrews, both to evaluate this idea and

Dental microwear has been shown to reflect diet in a broad variety of fossil mammals. Recent studies have suggested that differences in microwear texture attributes between samples may also reflect environmental abrasive loads. Here, we examine dental microwear textures on the incisors of shrews, both to evaluate this idea and to expand the extant baseline to include Soricidae. Specimens were chosen to sample a broad range of environments, semi-desert to rainforest. Species examined were all largely insectivorous, but some are reported to supplement their diets with vertebrate tissues and others with plant matter. Results indicate subtle but significant differences between samples grouped by both diet independent of environment and environment independent of diet. Subtle diet differences were more evident in microwear texture variation considered by habitat (i.e., grassland). These results suggest that while environment does not swamp the diet signal in shrew incisor microwear, studies can benefit from control of habitat type.

ContributorsWithnell, Charles (Author) / Ungar, Peter S. (Author) / School of Human Evolution and Social Change (Contributor)
Created2014-08-01
129563-Thumbnail Image.png
Description

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other and the object, the underlying mechanisms remain unclear. To address this question, we asked subjects (n = 30) to match perceived vertical distance between the center of pressure (CoP) of the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same hand (“test” hand). The digits of reference hand were passively placed collinearly (dy = 0 mm). Subjects were then asked to exert different combinations of normal and tangential digit forces (Fn and Ftan, respectively) using the reference hand and then match the memorized dy using the test hand. The reference hand exerted Ftan of thumb and index finger in either same or opposite direction. We hypothesized that, when the tangential forces of the digits are produced in opposite directions, matching error (1) would be biased toward the directions of the tangential forces; and (2) would be greater when the remembered relative contact points are matched with negligible digit force production. For the test hand, digit forces were either negligible (0.5–1 N, 0 ± 0.25 N; Experiment 1) or the same as those exerted by the reference hand (Experiment 2).Matching error was biased towards the direction of digit tangential forces: thumb CoP was placed higher than the index finger CoP when thumb and index finger Ftan were directed upward and downward, respectively, and vice versa (p < 0.001). However, matching error was not dependent on whether the reference and test hand exerted similar or different forces. We propose that the expected sensory consequence of motor commands for tangential forces in opposite directions overrides estimation of fingertip position through haptic sensory feedback.

ContributorsShibata, Daisuke (Author) / Kappers, Astrid M. L. (Author) / Santello, Marco (Author) / College of Health Solutions (Contributor)
Created2014-08-04
129352-Thumbnail Image.png
Description

Over the last two decades, our knowledge concerning intracellular events that regulate integrin’s affinity to their soluble ligands has significantly improved. However, the mechanism of adhesion-induced integrin clustering and development of focal complexes, which could further mature to form focal adhesions, still remains under-investigated. Here we present a structural model

Over the last two decades, our knowledge concerning intracellular events that regulate integrin’s affinity to their soluble ligands has significantly improved. However, the mechanism of adhesion-induced integrin clustering and development of focal complexes, which could further mature to form focal adhesions, still remains under-investigated. Here we present a structural model of tandem IgC2 domains of skelemin in complex with the cytoplasmic tails of integrin α[subscript IIb]β[subscript 3]. The model of tertiary assembly is generated based upon NMR data and illuminates a potential link between the essential cell adhesion receptors and myosin filaments. This connection may serve as a basis for generating the mechanical forces necessary for cell migration and remodeling.

ContributorsGorbatyuk, Vitaliy (Author) / Nguyen, Kheim (Author) / Podolnikova, Nataly (Author) / Deshmukh, Lalit (Author) / Lin, Xiaochen (Author) / Ugarova, Tatiana (Author) / Vinogradova, Olga (Author) / College of Health Solutions (Contributor)
Created2014-11-04
129244-Thumbnail Image.png
Description

Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response

Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response to their environment. We propose a set of differential equations describing the dynamics of: (1) available foragers inside the nest, (2) active foragers outside the nest, and (3) successful returning foragers, to understand how colony-specific parameters, such as baseline number of foragers, interactions among foragers, food discovery rates, successful forager return rates, and foraging duration might influence collective foraging dynamics, while maintaining functional robustness to perturbations. Our analysis indicates that the model can undergo a forward (transcritical) bifurcation or a backward bifurcation depending on colony-specific parameters. In the former case, foraging activity persists when the average number of recruits per successful returning forager is larger than one. In the latter case, the backward bifurcation creates a region of bistability in which the size and fate of foraging activity depends on the distribution of the foraging workforce among the model׳s compartments. We validate the model with experimental data from harvester ants (Pogonomyrmex barbatus) and perform sensitivity analysis. Our model provides insights on how simple, local interactions can achieve an emergent and robust regulatory system of collective foraging activity in ant colonies.

Created2015-02-21
129251-Thumbnail Image.png
Description

Forecasts of noise pollution from a highway line segment noise source are obtained from a sound propagation model utilizing effective sound speed profiles derived from a Numerical Weather Prediction (NWP) limited area forecast with 1 km horizontal resolution and near-ground vertical resolution finer than 20 m. Methods for temporal along

Forecasts of noise pollution from a highway line segment noise source are obtained from a sound propagation model utilizing effective sound speed profiles derived from a Numerical Weather Prediction (NWP) limited area forecast with 1 km horizontal resolution and near-ground vertical resolution finer than 20 m. Methods for temporal along with horizontal and vertical spatial nesting are demonstrated within the NWP model for maintaining forecast feasibility. It is shown that vertical nesting can improve the prediction of finer structures in near-ground temperature and velocity profiles, such as morning temperature inversions and low level jet-like features. Accurate representation of these features is shown to be important for modeling sound refraction phenomena and for enabling accurate noise assessment. Comparisons are made using the parabolic equation model for predictions with profiles derived from NWP simulations and from field experiment observations during mornings on November 7 and 8, 2006 in Phoenix, Arizona. The challenges faced in simulating accurate meteorological profiles at high resolution for sound propagation applications are highlighted and areas for possible improvement are discussed.

ContributorsShaffer, Stephen (Author) / Fernando, H. J. S. (Author) / Ovenden, N. C. (Author) / Moustaoui, Mohamed (Author) / Mahalov, Alex (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-05-01
129252-Thumbnail Image.png
Description

Physical mechanisms of incongruency between observations and Weather Research and Forecasting (WRF) Model predictions are examined. Limitations of evaluation are constrained by (i) parameterizations of model physics, (ii) parameterizations of input data, (iii) model resolution, and (iv) flux observation resolution. Observations from a new 22.1-m flux tower situated within a

Physical mechanisms of incongruency between observations and Weather Research and Forecasting (WRF) Model predictions are examined. Limitations of evaluation are constrained by (i) parameterizations of model physics, (ii) parameterizations of input data, (iii) model resolution, and (iv) flux observation resolution. Observations from a new 22.1-m flux tower situated within a residential neighborhood in Phoenix, Arizona, are utilized to evaluate the ability of the urbanized WRF to resolve finescale surface energy balance (SEB) when using the urban classes derived from the 30-m-resolution National Land Cover Database. Modeled SEB response to a large seasonal variation of net radiation forcing was tested during synoptically quiescent periods of high pressure in winter 2011 and premonsoon summer 2012. Results are presented from simulations employing five nested domains down to 333-m horizontal resolution. A comparative analysis of model cases testing parameterization of physical processes was done using four configurations of urban parameterization for the bulk urban scheme versus three representations with the Urban Canopy Model (UCM) scheme, and also for two types of planetary boundary layer parameterization: the local Mellor–Yamada–Janjić scheme and the nonlocal Yonsei University scheme. Diurnal variation in SEB constituent fluxes is examined in relation to surface-layer stability and modeled diagnostic variables. Improvement is found when adapting UCM for Phoenix with reduced errors in the SEB components. Finer model resolution is seen to have insignificant (<1 standard deviation) influence on mean absolute percent difference of 30-min diurnal mean SEB terms.

ContributorsShaffer, Stephen (Author) / Chow, Winston, 1951- (Author) / Georgescu, Matei (Author) / Hyde, Peter (Author) / Jenerette, G. D. (Author) / Mahalov, Alex (Author) / Moustaoui, Mohamed (Author) / Ruddell, Benjamin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-11
129284-Thumbnail Image.png
Description

High-density electroencephalography was used to evaluate cortical activity during speech comprehension via a sentence verification task. Twenty-four participants assigned true or false to sentences produced with 3 noise-vocoded channel levels (1-unintelligible, 6-decipherable, 16-intelligible), during simultaneous EEG recording. Participant data were sorted into higher- (HP) and lower-performing (LP) groups. The identification

High-density electroencephalography was used to evaluate cortical activity during speech comprehension via a sentence verification task. Twenty-four participants assigned true or false to sentences produced with 3 noise-vocoded channel levels (1-unintelligible, 6-decipherable, 16-intelligible), during simultaneous EEG recording. Participant data were sorted into higher- (HP) and lower-performing (LP) groups. The identification of a late-event related potential for LP listeners in the intelligible condition and in all listeners when challenged with a 6-Ch signal supports the notion that this induced potential may be related to either processing degraded speech, or degraded processing of intelligible speech. Different cortical locations are identified as neural generators responsible for this activity; HP listeners are engaging motor aspects of their language system, utilizing an acoustic–phonetic based strategy to help resolve the sentence, while LP listeners do not. This study presents evidence for neurophysiological indices associated with more or less successful speech comprehension performance across listening conditions.

ContributorsUtianski, Rene (Author) / Caviness, John N. (Author) / Liss, Julie (Author) / College of Health Solutions (Contributor)
Created2015-01-01
129454-Thumbnail Image.png
Description

Previous studies suggest that bilinguals have certain executive function advantages over monolinguals. However, few studies have examined specific working memory (WM) differences between monolinguals and bilinguals using complex span tasks. In the current study, 52 bilingual and 53 monolingual speakers were administered simple and complex WM span tasks, including a

Previous studies suggest that bilinguals have certain executive function advantages over monolinguals. However, few studies have examined specific working memory (WM) differences between monolinguals and bilinguals using complex span tasks. In the current study, 52 bilingual and 53 monolingual speakers were administered simple and complex WM span tasks, including a backward digit-span task, standard operation span tasks and a non-verbal symmetry span task. WM performance was a strong predictor of performance on other WM tasks, whereas bilingual status was not. Thus, the present study did not find evidence of a bilingual advantage in WM capacity.

ContributorsRatiu, Ileana (Author) / Azuma, Tamiko (Author) / College of Health Solutions (Contributor)
Created2015-01-02
129223-Thumbnail Image.png
Description

Background: Opioid peptides, including dynorphin A, besides their analgesic action in the nervous system, exert a broad spectrum of effects on cells of the immune system, including leukocyte migration, degranulation and cytokine production. The mechanisms whereby opioid peptides induce leukocyte responses are poorly understood. The integrin Mac-1 (alpha(M)beta(2), CD11b/CD18) is

Background: Opioid peptides, including dynorphin A, besides their analgesic action in the nervous system, exert a broad spectrum of effects on cells of the immune system, including leukocyte migration, degranulation and cytokine production. The mechanisms whereby opioid peptides induce leukocyte responses are poorly understood. The integrin Mac-1 (alpha(M)beta(2), CD11b/CD18) is a multiligand receptor which mediates numerous reactions of neutrophils and monocyte/macrophages during the immune-inflammatory response. Our recent elucidation of the ligand recognition specificity of Mac-1 suggested that dynorphin A and dynorphin B contain Mac-1 recognition motifs and can potentially interact with this receptor.

Results: In this study, we have synthesized the peptide library spanning the sequence of dynorphin AB, containing dynorphin A and B, and showed that the peptides bound recombinant alpha I-M-domain, the ligand binding region of Mac-1. In addition, immobilized dynorphins A and B supported adhesion of the Mac-1-expressing cells. In binding to dynorphins A and B, Mac-1 cooperated with cell surface proteoglycans since both anti-Mac-1 function-blocking reagents and heparin were required to block adhesion. Further focusing on dynorphin A, we showed that its interaction with the alpha I-M-domain was activation independent as both the alpha 7 helix-truncated (active conformation) and helix-extended (nonactive conformation) alpha I-M-domains efficiently bound dynorphin A. Dynorphin A induced a potent migratory response of Mac-1-expressing, but not Mac-1-deficient leukocytes, and enhanced Mac-1-mediated phagocytosis of latex beads by murine IC-21 macrophages.

Conclusions: Together, the results identify dynorphins A and B as novel ligands for Mac-1 and suggest a role for the Dynorphin A-Mac-1 interactions in the induction of nonopiod receptor-dependent effects in leukocytes.

ContributorsPodolnikova, Nataly (Author) / Brothwell, Julie A. (Author) / Ugarova, Tatiana (Author) / College of Health Solutions (Contributor)
Created2015-06-03