This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 22
Filtering by

Clear all filters

128873-Thumbnail Image.png
Description

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.

Conclusions: These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.

ContributorsMcLean, Carrie (Author) / Mielke, Clinton (Author) / Cordova, Jeanine (Author) / Langlais, Paul R. (Author) / Bowen, Benjamin (Author) / Miranda, Danielle (Author) / Coletta, Dawn (Author) / Mandarino, Lawrence (Author) / College of Health Solutions (Contributor)
Created2015-05-18
128669-Thumbnail Image.png
Description

The production, characterization, and antioxidant capacity of the carotenoid fucoxanthin from the marine diatom Odontella aurita were investigated. The results showed that low light and nitrogen-replete culture medium enhanced the biosynthesis of fucoxanthin. The maximum biomass concentration of 6.36 g L-1 and maximum fucoxanthin concentration of 18.47 mg g-1 were

The production, characterization, and antioxidant capacity of the carotenoid fucoxanthin from the marine diatom Odontella aurita were investigated. The results showed that low light and nitrogen-replete culture medium enhanced the biosynthesis of fucoxanthin. The maximum biomass concentration of 6.36 g L-1 and maximum fucoxanthin concentration of 18.47 mg g-1 were obtained in cultures grown in a bubble column photobioreactor (Ø 3.0 cm inner diameter), resulting in a fucoxanthin volumetric productivity of 7.96 mg L-1 day-1. A slight reduction in biomass production was observed in the scaling up of O. aurita culture in a flat plate photobioreactor, yet yielded a comparable fucoxanthin volumetric productivity. A rapid method was developed for extraction and purification of fucoxanthin. The purified fucoxanthin was identified as all-trans-fucoxanthin, which exhibited strong antioxidant properties, with the effective concentration for 50% scavenging (EC50) of 1,1-dihpenyl-2-picrylhydrazyl (DPPH) radical and 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical being 0.14 and 0.03 mg mL-1, respectively. Our results suggested that O. aurita can be a natural source of fucoxanthin for human health and nutrition.

ContributorsXia, Song (Author) / Wang, Ke (Author) / Wan, Linglin (Author) / Li, Aifen (Author) / Hu, Qiang (Author) / Zhang, Chengwu (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-07-23
128923-Thumbnail Image.png
Description

The unicellular microalga Haematococcus pluvialis has emerged as a promising biomass feedstock for the ketocarotenoid astaxanthin and neutral lipid triacylglycerol. Motile flagellates, resting palmella cells, and cysts are the major life cycle stages of H. pluvialis. Fast-growing motile cells are usually used to induce astaxanthin and triacylglycerol biosynthesis under stress

The unicellular microalga Haematococcus pluvialis has emerged as a promising biomass feedstock for the ketocarotenoid astaxanthin and neutral lipid triacylglycerol. Motile flagellates, resting palmella cells, and cysts are the major life cycle stages of H. pluvialis. Fast-growing motile cells are usually used to induce astaxanthin and triacylglycerol biosynthesis under stress conditions (high light or nutrient starvation); however, productivity of biomass and bioproducts are compromised due to the susceptibility of motile cells to stress. This study revealed that the Photosystem II (PSII) reaction center D1 protein, the manganese-stabilizing protein PsbO, and several major membrane glycerolipids (particularly for chloroplast membrane lipids monogalactosyldiacylglycerol and phosphatidylglycerol), decreased dramatically in motile cells under high light (HL). In contrast, palmella cells, which are transformed from motile cells after an extended period of time under favorable growth conditions, have developed multiple protective mechanisms - including reduction in chloroplast membrane lipids content, downplay of linear photosynthetic electron transport, and activating nonphotochemical quenching mechanisms - while accumulating triacylglycerol. Consequently, the membrane lipids and PSII proteins (D1 and PsbO) remained relatively stable in palmella cells subjected to HL. Introducing palmella instead of motile cells to stress conditions may greatly increase astaxanthin and lipid production in H. pluvialis culture.

ContributorsWang, Baobei (Author) / Zhang, Zhen (Author) / Hu, Qiang (Author) / Sommerfeld, Milton (Author) / Lu, Yinghua (Author) / Han, Danxiang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-15
128752-Thumbnail Image.png
Description

Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect

Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10[superscript -9]), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.

ContributorsWinnier, Deidre A. (Author) / Fourcaudot, Marcel (Author) / Norton, Luke (Author) / Abdul-Ghani, Muhammad A. (Author) / Hu, Shirley L. (Author) / Farook, Vidya S. (Author) / Coletta, Dawn (Author) / Kumar, Satish (Author) / Puppala, Sobha (Author) / Chittoor, Geetha (Author) / Dyer, Thomas D. (Author) / Arya, Rector (Author) / Carless, Melanie (Author) / Lehman, Donna M. (Author) / Curran, Joanne E. (Author) / Cromack, Douglas T. (Author) / Tripathy, Devjit (Author) / Blangero, John (Author) / Duggirala, Ravindranath (Author) / Goring, Harald H. H. (Author) / DeFronzo, Ralph A. (Author) / Jenkinson, Christopher P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-01
128455-Thumbnail Image.png
Description

A new genomovirus has been identified in three common bean plants in Brazil. This virus has a circular genome of 2,220 nucleotides and 3 major open reading frames. It shares 80.7% genome-wide pairwise identity with a genomovirus recovered from Tongan fruit bat guano.

Created2016-11-10
128445-Thumbnail Image.png
Description

Here we report the first complete genome sequence of a cauliflower mosaic virus from Brazil, obtained from the gut content of the predator earwig (Doru luteipes). This virus has a genome of 8,030 nucleotides (nt) and shares 97% genome-wide identity with an isolate from Argentina.

Created2017-03-16
128444-Thumbnail Image.png
Description

Implementation of a vector-enabled metagenomics approach resulted in the identification of various gemini viruses. We identified the genome sequences of beet curly top Iran virus, turnip curly top viruses, oat dwarf viruses, the first from Iran, and wheat dwarf virus from leafhoppers feeding on beet, parsley, pumpkin, and turnip plants.

ContributorsKamali, Mehdi (Author) / Heydarnejad, Jahangir (Author) / Pouramini, Najmeh (Author) / Masumi, Hossain (Author) / Farkas, Kata (Author) / Kraberger, Simona (Author) / Varsani, Arvind (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-02-23
128437-Thumbnail Image.png
Description

Metagenomic approaches are rapidly expanding our knowledge of the diversity of viruses. In the fecal matter of Nigerian chimpanzees we recovered three gokushovirus genomes, one circular replication-associated protein encoding single-stranded DNA virus (CRESS), and a CRESS DNA molecule.

ContributorsWalters, Matthew (Author) / Bawuro, Musa (Author) / Christopher, Alfred (Author) / Knight, Alexander (Author) / Kraberger, Simona (Author) / Stainton, Daisy (Author) / Chapman, Hazel (Author) / Varsani, Arvind (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-03-02
128352-Thumbnail Image.png
Description

Four genomovirus genomes were recovered from thrips (Echinothrips americanus) collected in Florida, USA. These represent four new species which are members of the Gemycircularvirus (n = 2), Gemyduguivirus (n = 1), and Gemykibivirus (n = 1) genera. This is the first record, to our knowledge, of genomoviruses associated with a

Four genomovirus genomes were recovered from thrips (Echinothrips americanus) collected in Florida, USA. These represent four new species which are members of the Gemycircularvirus (n = 2), Gemyduguivirus (n = 1), and Gemykibivirus (n = 1) genera. This is the first record, to our knowledge, of genomoviruses associated with a phytophagous insect.

ContributorsKraberger, Simona Joop (Author) / Polston, Jane E. (Author) / Capobianco, Heather M. (Author) / Alcala-Briseno, Ricardo I. (Author) / Fontenele, Rafaela Salgado (Author) / Varsani, Arvind (Author) / Biodesign Institute (Contributor)
Created2017-05-25
128339-Thumbnail Image.png
Description

With the advent of metagenomics approaches, a large diversity of known and unknown viruses has been identified in various types of environmental, plant, and animal samples. One such widespread virus group is the recently established family Genomoviridae which includes viruses with small (∼2–2.4 kb), circular ssDNA genomes encoding rolling-circle replication initiation

With the advent of metagenomics approaches, a large diversity of known and unknown viruses has been identified in various types of environmental, plant, and animal samples. One such widespread virus group is the recently established family Genomoviridae which includes viruses with small (∼2–2.4 kb), circular ssDNA genomes encoding rolling-circle replication initiation proteins (Rep) and unique capsid proteins. Here, we propose a sequence-based taxonomic framework for classification of 121 new virus genomes within this family. Genomoviruses display ∼47% sequence diversity, which is very similar to that within the well-established and extensively studied family Geminiviridae (46% diversity). Based on our analysis, we establish a 78% genome-wide pairwise identity as a species demarcation threshold. Furthermore, using a Rep sequence phylogeny-based analysis coupled with the current knowledge on the classification of geminiviruses, we establish nine genera within the Genomoviridae family. These are Gemycircularvirus (n = 73), Gemyduguivirus (n = 1), Gemygorvirus (n = 9), Gemykibivirus (n = 29), Gemykolovirus (n = 3), Gemykrogvirus (n = 3), Gemykroznavirus (n = 1), Gemytondvirus (n = 1), Gemyvongvirus (n = 1). The presented taxonomic framework offers rational classification of genomoviruses based on the sequence information alone and sets an example for future classification of other groups of uncultured viruses discovered using metagenomics approaches.

ContributorsVarsani, Arvind (Author) / Krupovic, Mart (Author) / Biodesign Institute (Contributor)
Created2017-02-02