This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 40
Filtering by

Clear all filters

Description

Background:
Theory suggests that individual behavioral responses impact the spread of flu-like illnesses, but this has been difficult to empirically characterize. Social distancing is an important component of behavioral response, though analyses have been limited by a lack of behavioral data. Our objective is to use media data to characterize social

Background:
Theory suggests that individual behavioral responses impact the spread of flu-like illnesses, but this has been difficult to empirically characterize. Social distancing is an important component of behavioral response, though analyses have been limited by a lack of behavioral data. Our objective is to use media data to characterize social distancing behavior in order to empirically inform explanatory and predictive epidemiological models.

Methods:
We use data on variation in home television viewing as a proxy for variation in time spent in the home and, by extension, contact. This behavioral proxy is imperfect but appealing since information on a rich and representative sample is collected using consistent techniques across time and most major cities. We study the April-May 2009 outbreak of A/H1N1 in Central Mexico and examine the dynamic behavioral response in aggregate and contrast the observed patterns of various demographic subgroups. We develop and calibrate a dynamic behavioral model of disease transmission informed by the proxy data on daily variation in contact rates and compare it to a standard (non-adaptive) model and a fixed effects model that crudely captures behavior.

Results:
We find that after a demonstrable initial behavioral response (consistent with social distancing) at the onset of the outbreak, there was attenuation in the response before the conclusion of the public health intervention. We find substantial differences in the behavioral response across age subgroups and socioeconomic levels. We also find that the dynamic behavioral and fixed effects transmission models better account for variation in new confirmed cases, generate more stable estimates of the baseline rate of transmission over time and predict the number of new cases over a short horizon with substantially less error.

Conclusions:
Results suggest that A/H1N1 had an innate transmission potential greater than previously thought but this was masked by behavioral responses. Observed differences in behavioral response across demographic groups indicate a potential benefit from targeting social distancing outreach efforts.

ContributorsSpringborn, Michael (Author) / Chowell-Puente, Gerardo (Author) / MacLachlan, Matthew (Author) / Fenichel, Eli P. (Author)
Created2015-01-23
141468-Thumbnail Image.png
Description

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that are more specific to the archaeological cases: i) societal choices are influenced by robustness–vulnerability trade-offs, ii) there is interplay between robustness–vulnerability trade-offs and robustness–performance trade-offs, iii) societies often get locked in to particular strategies, and iv) multiple positive feedbacks escalate the perceived cost of societal change. We then discuss whether these lock-in traps can be prevented or whether the risks associated with them can be mitigated. We conclude by highlighting how these long-term historical studies can help us to understand current society, societal practices, and the nexus between ecology and society.

ContributorsSchoon, Michael (Author) / Fabricius, Christo (Author) / Anderies, John (Author) / Nelson, Margaret (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011
129026-Thumbnail Image.png
Description

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies have shed light into the risk factors associated with severe

Background: Increasing our understanding of the factors affecting the severity of the 2009 A/H1N1 influenza pandemic in different regions of the world could lead to improved clinical practice and mitigation strategies for future influenza pandemics. Even though a number of studies have shed light into the risk factors associated with severe outcomes of 2009 A/H1N1 influenza infections in different populations (e.g., [1-5]), analyses of the determinants of mortality risk spanning multiple pandemic waves and geographic regions are scarce. Between-country differences in the mortality burden of the 2009 pandemic could be linked to differences in influenza case management, underlying population health, or intrinsic differences in disease transmission [6]. Additional studies elucidating the determinants of disease severity globally are warranted to guide prevention efforts in future influenza pandemics.

In Mexico, the 2009 A/H1N1 influenza pandemic was characterized by a three-wave pattern occurring in the spring, summer, and fall of 2009 with substantial geographical heterogeneity [7]. A recent study suggests that Mexico experienced high excess mortality burden during the 2009 A/H1N1 influenza pandemic relative to other countries [6]. However, an assessment of potential factors that contributed to the relatively high pandemic death toll in Mexico are lacking. Here, we fill this gap by analyzing a large series of laboratory-confirmed A/H1N1 influenza cases, hospitalizations, and deaths monitored by the Mexican Social Security medical system during April 1 through December 31, 2009 in Mexico. In particular, we quantify the association between disease severity, hospital admission delays, and neuraminidase inhibitor use by demographic characteristics, pandemic wave, and geographic regions of Mexico.

Methods: We analyzed a large series of laboratory-confirmed pandemic A/H1N1 influenza cases from a prospective surveillance system maintained by the Mexican Social Security system, April-December 2009. We considered a spectrum of disease severity encompassing outpatient visits, hospitalizations, and deaths, and recorded demographic and geographic information on individual patients. We assessed the impact of neuraminidase inhibitor treatment and hospital admission delay (≤ > 2 days after disease onset) on the risk of death by multivariate logistic regression.

Results: Approximately 50% of all A/H1N1-positive patients received antiviral medication during the Spring and Summer 2009 pandemic waves in Mexico while only 9% of A/H1N1 cases received antiviral medications during the fall wave (P < 0.0001). After adjustment for age, gender, and geography, antiviral treatment significantly reduced the risk of death (OR = 0.52 (95% CI: 0.30, 0.90)) while longer hospital admission delays increased the risk of death by 2.8-fold (95% CI: 2.25, 3.41).

Conclusions: Our findings underscore the potential impact of decreasing admission delays and increasing antiviral use to mitigate the mortality burden of future influenza pandemics.

Created2012-04-20
128248-Thumbnail Image.png
Description

In order to improve the efficiency of government spending, it is necessary for the decentralized irrigation management to gain support from local institutions. Efficient institutions take on several distinct configurations in different irrigation districts. In this research, we upgrade Tang’s (1992) framework focusing on incentives, to a framework that includes

In order to improve the efficiency of government spending, it is necessary for the decentralized irrigation management to gain support from local institutions. Efficient institutions take on several distinct configurations in different irrigation districts. In this research, we upgrade Tang’s (1992) framework focusing on incentives, to a framework that includes institutional incentives and coordination. Within the framework, we then classify 5 institutional variables: water pricing reform (P), government funding (F), coordination by administration (C), having formal monitors (M) and self-organized management (S). This article processes the data obtained through a field survey (2009–2011) in 20 of China’s southern counties, where they implement the “Small-scale Irrigation and Water Conservancy Key Counties Construction (Key Counties Construction)”, a national project supported by the central government. Next, it applies Data Envelopment Analysis (DEA) to measure the efficiency of government spending and uses Qualitative Comparative Analysis (QCA) to extract efficient institutional configurations. It concludes that there are generally three types of institutional configurations able to improve the efficiency of government spending, which are respectively: “government funding combined with coordination by administration”, “water pricing reform combined with self-organized management and coordination by administration or water pricing reform combined with self-organized management and government funding and formal monitors” and “self-organized management”. Among these, the second configuration is a mixed governance structure with multiple institutions coexisting, and this configuration occurs in the most efficient key counties. For that reason, it is viewed as the mainstream irrigation management approach, and we expect it to be the development trend in the future. Although Chinese irrigation policies are formalizing effective local institutions, they are still not sufficient. Future policies are needed to 1) promote institutions of government support for water laws in order to build stable expectations for both water user associations (WUAs) and farmers, 2) guide water pricing reform by ensuring farmers’ water rights and regulating water markets, and 3) provide opportunities for hiring professional monitors and crafting formal rules.

Created2016-02-01
128411-Thumbnail Image.png
Description

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season.
Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.

Results: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.

Conclusion: Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.

Created2015-07-28
128513-Thumbnail Image.png
Description

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be −7.9, −5.51, −6.11, and −3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively.

ContributorsDybala, F. (Author) / Polak, M. P. (Author) / Kopaczek, J. (Author) / Scharoch, P. (Author) / Wu, Kedi (Author) / Tongay, Sefaattin (Author) / Kudrawiec, R. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24
128512-Thumbnail Image.png
Description

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina,

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina, Canada, Chile, France, Italy, New Zealand, Peru, Portugal, and the USA. Yet, the role of sexual transmission on the spread and control of ZIKV infection is not well-understood. We introduce a mathematical model to investigate the impact of mosquito-borne and sexual transmission on the spread and control of ZIKV and calibrate the model to ZIKV epidemic data from Brazil, Colombia, and El Salvador. Parameter estimates yielded a basic reproduction number R0 = 2.055 (95% CI: 0.523–6.300), in which the percentage contribution of sexual transmission is 3.044% (95% CI: 0.123–45.73). Our sensitivity analyses indicate that R0 is most sensitive to the biting rate and mortality rate of mosquitoes while sexual transmission increases the risk of infection and epidemic size and prolongs the outbreak. Prevention and control efforts against ZIKV should target both the mosquito-borne and sexual transmission routes.

ContributorsGao, Daozhou (Author) / Lou, Yijun (Author) / He, Daihai (Author) / Porco, Travis C. (Author) / Kuang, Yang (Author) / Chowell-Puente, Gerardo (Author) / Ruan, Shigui (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-06-17
128505-Thumbnail Image.png
Description

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviors. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2.

ContributorsWang, Gang (Author) / Robert, Cedric (Author) / Tuna, Aslihan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Alamdari, Sarah (Author) / Gerber, Iann C. (Author) / Amand, Thierry (Author) / Marie, Xavier (Author) / Tongay, Sefaattin (Author) / Urbaszek, Bernhard (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-14
128492-Thumbnail Image.png
Description

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

ContributorsTuna, Aslihan (Author) / Wu, Kedi (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Cai, Hui (Author) / Aoki, Toshihiro (Author) / Horzum, Seyda (Author) / Kang, Jun (Author) / Peeters, Francois M. (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-05
128491-Thumbnail Image.png
Description

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S–S molecular oscillations. High-pressure Raman studies further reveal that the AgS-S S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.

ContributorsWu, Kedi (Author) / Torun, Engin (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Fan, Xi (Author) / Pant, Anupum (Author) / Wright, David (Author) / Aoki, Toshihiro (Author) / Peeters, Francois M. (Author) / Soignard, Emmanuel (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-09-22