This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 42
Filtering by

Clear all filters

128512-Thumbnail Image.png
Description

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina,

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina, Canada, Chile, France, Italy, New Zealand, Peru, Portugal, and the USA. Yet, the role of sexual transmission on the spread and control of ZIKV infection is not well-understood. We introduce a mathematical model to investigate the impact of mosquito-borne and sexual transmission on the spread and control of ZIKV and calibrate the model to ZIKV epidemic data from Brazil, Colombia, and El Salvador. Parameter estimates yielded a basic reproduction number R0 = 2.055 (95% CI: 0.523–6.300), in which the percentage contribution of sexual transmission is 3.044% (95% CI: 0.123–45.73). Our sensitivity analyses indicate that R0 is most sensitive to the biting rate and mortality rate of mosquitoes while sexual transmission increases the risk of infection and epidemic size and prolongs the outbreak. Prevention and control efforts against ZIKV should target both the mosquito-borne and sexual transmission routes.

ContributorsGao, Daozhou (Author) / Lou, Yijun (Author) / He, Daihai (Author) / Porco, Travis C. (Author) / Kuang, Yang (Author) / Chowell-Puente, Gerardo (Author) / Ruan, Shigui (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-06-17
128478-Thumbnail Image.png
Description

Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives,

Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives, a comprehensive examination of this hypothesis has not been possible. Here, we annotate ∼3,000 odorant and gustatory receptors in recently sequenced Hymenoptera genomes and systematically compare >4,000 chemoreceptors from 13 hymenopterans, representing one solitary lineage (wasps) and three independently evolved eusocial lineages (ants and two bees). We observe a strong general tendency for chemoreceptors to expand in Hymenoptera, whereas the specifics of gene gains/losses are highly diverse between lineages. We also find more frequent positive selection on chemoreceptors in a facultative eusocial bee and in the common ancestor of ants compared with solitary wasps. Our results suggest that the frequent expansions of chemoreceptors have facilitated the transition to eusociality. Divergent expression patterns of odorant receptors between honeybee and ants further indicate differential roles of chemoreceptors in parallel trajectories of social evolution.

ContributorsZhou, Xiaofan (Author) / Rokas, Antonis (Author) / Berger, Shelley L. (Author) / Liebig, Juergen (Author) / Ray, Anandasankar (Author) / Zwiebel, Laurence J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-12
128564-Thumbnail Image.png
Description

Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects.

Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects. We used replicated bisulfite-sequencing to investigate patterns of DNA methylation in both sexes and among castes of Z. nevadensis. We discovered that Z. nevadensis displayed some of the highest levels of DNA methylation found in insects. We also found strong differences in methylation between castes. Methylated genes tended to be uniformly and highly expressed demonstrating the antiquity of associations between intragenic methylation and gene expression. Differentially methylated genes were more likely to be alternatively spliced than not differentially methylated genes, and possessed considerable enrichment for development-associated functions. We further observed strong overrepresentation of multiple transcription factor binding sites and miRNA profiles associated with differential methylation, providing new insights into the possible function of DNA methylation. Overall, our results show that DNA methylation is widespread and associated with caste differences in termites. More generally, this study provides insights into the function of DNA methylation and the success of insect societies.

ContributorsGlastad, Karl M. (Author) / Gokhale, Kaustubh (Author) / Liebig, Juergen (Author) / Goodisman, Michael A. D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-11-16
128541-Thumbnail Image.png
Description

Gut-associated microbiota of ants include Rhizobiales bacteria with affiliation to the genus Bartonella. These bacteria may enable the ants to fix atmospheric nitrogen, but no genomes have been sequenced yet to test the hypothesis. Sequence reads from a member of the Rhizobiales were identified in the data collected in a

Gut-associated microbiota of ants include Rhizobiales bacteria with affiliation to the genus Bartonella. These bacteria may enable the ants to fix atmospheric nitrogen, but no genomes have been sequenced yet to test the hypothesis. Sequence reads from a member of the Rhizobiales were identified in the data collected in a genome project of the ant Harpegnathos saltator. We present an analysis of the closed 1.86 Mb genome of the ant-associated bacterium, for which we suggest the species name Candidatus Tokpelaia hoelldoblerii. A phylogenetic analysis reveals a relationship to Bartonella and Brucella, which infect mammals. Novel gene acquisitions include a gene for a putative extracellular protein of more than 6,000 amino acids secreted by the type I secretion system, which may be involved in attachment to the gut epithelium. No genes for nitrogen fixation could be identified, but genes for a multi-subunit urease protein complex are present in the genome. The urease genes are also present in Brucella, which has a fecal-oral transmission pathway, but not in Bartonella, which use blood-borne transmission pathways. We hypothesize that the gain and loss of the urease function is related to transmission strategies and lifestyle changes in the host-associated members of the Rhizobiales.

ContributorsNeuvonen, Minna-Maria (Author) / Tamarit, Daniel (Author) / Naslund, Kristina (Author) / Liebig, Juergen (Author) / Feldhaar, Heike (Author) / Moran, Nancy A. (Author) / Guy, Lionel (Author) / Andersson, Siv G. E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-12-15
128769-Thumbnail Image.png
Description

Theory suggests that human behavior has implications for disease spread. We examine the hypothesis that individuals engage in voluntary defensive behavior during an epidemic. We estimate the number of passengers missing previously purchased flights as a function of concern for swine flu or A/H1N1 influenza using 1.7 million detailed flight

Theory suggests that human behavior has implications for disease spread. We examine the hypothesis that individuals engage in voluntary defensive behavior during an epidemic. We estimate the number of passengers missing previously purchased flights as a function of concern for swine flu or A/H1N1 influenza using 1.7 million detailed flight records, Google Trends, and the World Health Organization's FluNet data. We estimate that concern over “swine flu,” as measured by Google Trends, accounted for 0.34% of missed flights during the epidemic. The Google Trends data correlates strongly with media attention, but poorly (at times negatively) with reported cases in FluNet. Passengers show no response to reported cases. Passengers skipping their purchased trips forwent at least $50 M in travel related benefits. Responding to actual cases would have cut this estimate in half. Thus, people appear to respond to an epidemic by voluntarily engaging in self-protection behavior, but this behavior may not be responsive to objective measures of risk. Clearer risk communication could substantially reduce epidemic costs. People undertaking costly risk reduction behavior, for example, forgoing nonrefundable flights, suggests they may also make less costly behavior adjustments to avoid infection. Accounting for defensive behaviors may be important for forecasting epidemics, but linking behavior with epidemics likely requires consideration of risk communication.

ContributorsFenichel, Eli P. (Author) / Kuminoff, Nicolai (Author) / Chowell-Puente, Gerardo (Author) / W.P. Carey School of Business (Contributor)
Created2013-03-20
128766-Thumbnail Image.png
Description

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative areas of Peru.

Methods: We used daily cases of influenza-like-illness, tests for A/H1N1 influenza virus infections, and laboratory-confirmed A/H1N1 influenza cases reported to the epidemiological surveillance system of Peru's Ministry of Health from May 1 to December 31, 2009. We analyzed the geographic spread of the pandemic waves and their association with the winter school vacation period, demographic factors, and absolute humidity. We also estimated the reproduction number and quantified the association between the winter school vacation period and the age distribution of cases.

Results: The national pandemic curve revealed a bimodal winter pandemic wave, with the first peak limited to school age children in the Lima metropolitan area, and the second peak more geographically widespread. The reproduction number was estimated at 1.6–2.2 for the Lima metropolitan area and 1.3–1.5 in the rest of Peru. We found a significant association between the timing of the school vacation period and changes in the age distribution of cases, while earlier pandemic onset was correlated with large population size. By contrast there was no association between pandemic dynamics and absolute humidity.

Conclusions: Our results indicate substantial spatial variation in pandemic patterns across Peru, with two pandemic waves of varying timing and impact by age and region. Moreover, the Peru data suggest a hierarchical transmission pattern of pandemic influenza A/H1N1 driven by large population centers. The higher reproduction number of the first pandemic wave could be explained by high contact rates among school-age children, the age group most affected during this early wave.

Created2011-06-21
128759-Thumbnail Image.png
Description

Background: The molecular mechanisms of variations in individual longevity are not well understood, even though longevity can be increased substantially by means of diverse experimental manipulations. One of the factors supposed to be involved in the increase of longevity is a higher stress resistance. To test this hypothesis in a natural

Background: The molecular mechanisms of variations in individual longevity are not well understood, even though longevity can be increased substantially by means of diverse experimental manipulations. One of the factors supposed to be involved in the increase of longevity is a higher stress resistance. To test this hypothesis in a natural system, eusocial insects such as bees or ants are ideally suited. In contrast to most other eusocial insects, ponerine ants show a peculiar life history that comprises the possibility to switch during adult life from a normal worker to a reproductive gamergate, therewith increasing their life expectancy significantly.

Results: We show that increased resistance against major stressors, such as reactive oxygen species and infection accompanies the switch from a life-history trait with normal lifespan to one with a longer life expectancy. A short period of social isolation was sufficient to enhance stress resistance of workers from the ponerine ant species Harpegnathos saltator significantly. All ant groups with increased stress resistances (reproducing gamergates and socially isolated workers) have lower catalase activities and glutathione levels than normal workers. Therewith, these ants resemble the characteristics of the youngest ants in the colony.

Conclusions: Social insects with their specific life history including a switch from normal workers to reproducing gamergates during adult life are well suited for ageing research. The regulation of stress resistance in gamergates seemed to be modified compared to foraging workers in an economic way. Interestingly, a switch towards more stress resistant animals can also be induced by a brief period of social isolation, which may already be associated with a shift to a reproductive trajectory. In Harpegnathos saltator, stress resistances are differently and potentially more economically regulated in reproductive individuals, highlighting the significance of reproduction for an increase in longevity in social insects. As already shown for other organisms with a long lifespan, this trait is not directly coupled to higher levels of enzymatic and non-enzymatic antioxidants.

Created2011-01-27
128753-Thumbnail Image.png
Description

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors.

Conclusions/Significance: Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS.

ContributorsLiu, Hai-Ning (Author) / Gao, Li-Dong (Author) / Chowell-Puente, Gerardo (Author) / Hu, Shi-Xiong (Author) / Lin, Xiao-Ling (Author) / Li, Xiu-Jun (Author) / Ma, Gui-Hua (Author) / Huang, Ru (Author) / Yang, Hui-Suo (Author) / Tian, Huaiyu (Author) / Xiao, Hong (Author) / Simon M. Levin Mathematical, Computational and Modeling Sciences Center (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-09-03
127997-Thumbnail Image.png
Description

Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers’ ovaries and if she is removed, workers can transition to

Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers’ ovaries and if she is removed, workers can transition to a reproductive state known as gamergate. Here we functionally characterize a subfamily of odorant receptors (Ors) with a nine-exon gene structure that have undergone a massive expansion in ants and other eusocial insects. We deorphanize 22 representative members and find they can detect cuticular hydrocarbons from different ant castes, with one (HsOr263) that responds strongly to gamergate extract and a candidate queen pheromone component. After systematic testing with a diverse panel of hydrocarbons, we find that most Harpegnathos saltator Ors are narrowly tuned, suggesting that several receptors must contribute to detection and discrimination of different cuticular hydrocarbons important in mediating eusocial behaviour.

ContributorsPask, Gregory M. (Author) / Slone, Jesse D. (Author) / Millar, Jocelyn G. (Author) / Das, Prithwiraj (Author) / Moreira, Jardel A. (Author) / Zhou, Xiaofan (Author) / Bello, Jan (Author) / Berger, Shelley L. (Author) / Bonasio, Roberto (Author) / Desplan, Claude (Author) / Reinberg, Danny (Author) / Liebig, Juergen (Author) / Zwiebel, Laurence J. (Author) / Ray, Anandasankar (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-17
128312-Thumbnail Image.png
Description

A significant challenge of our time is conserving biological diversity while maintaining economic development and cultural values. The United Nations Educational, Scientific and Cultural Organization has established biosphere reserves within its Man and the Biosphere program as a model means for accomplishing this very challenge. The East Carpathians Biosphere Reserve

A significant challenge of our time is conserving biological diversity while maintaining economic development and cultural values. The United Nations Educational, Scientific and Cultural Organization has established biosphere reserves within its Man and the Biosphere program as a model means for accomplishing this very challenge. The East Carpathians Biosphere Reserve (ECBR), spreading across Poland, Slovakia, and Ukraine, represents a large social-ecological system (SES) that has been protected under the biosphere reserve designation since 1998. We have explored its successes and failures in improving human livelihoods while safeguarding its ecosystems. The SES framework, which includes governance system, actors, resources, and external influences, was used as a frame of analysis. The outcomes of this protected area have been mixed; its creation led to national and international collaboration, yet some actor groups remain excluded. Implementation of protocols arising from the Carpathian Convention has been slow, while deforestation, hunting, erosion, temperature extremes, and changes in species behavior remain significant threats but have also been factors in ecological adaptation. The loss of cultural links and traditional knowledge has also been significant. Nevertheless, this remains a highly biodiverse area. Political barriers and institutional blockages will have to be removed to ensure this reserve fulfills its role as a model region for international collaboration and capacity building. These insights drawn from the ECBR demonstrate that biosphere reserves are indeed learning sites for sustainable development and that this case is exemplary in illustrating the challenges, but more importantly, the opportunities that arise when ensuring parallel care and respect for people and ecosystems through the model of transboundary protected areas around the world.

Created2016