This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 41 - 50 of 76
Filtering by

Clear all filters

128761-Thumbnail Image.png
Description

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can make contributions to a linear public good by logging into a web application and performing virtual actions. We compared four treatments, with different group sizes and information of (relative) performance of other groups. We find that information feedback about performance of other groups has a small positive effect if we control for various attributes of the groups. Moreover, we find a significant effect of the contributions of others in the group in the previous day on the number of points earned in the current day. Our results confirm that people participate more when participants in their group participate more, and are influenced by information about the relative performance of other groups.

ContributorsJanssen, Marco (Author) / Lee, Allen (Author) / Sundaram, Hari (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-07-26
128750-Thumbnail Image.png
Description

This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using

This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using Spearman’s correlation, ordinary least squares regression (OLS), and a spatial autoregressive model (SAR). Across all cities there is a strong positive correlation between UTC cover and median household income. Negative correlations between race and UTC cover exist in bivariate models for some cities, but they are generally not observed using multivariate regressions that include additional variables on income, education, and housing age. SAR models result in higher r-square values compared to the OLS models across all cities, suggesting that spatial autocorrelation is an important feature of our data. Similarities among cities can be found based on shared characteristics of climate, race/ethnicity, and size. Our findings suggest that a suite of variables, including income, contribute to the distribution of UTC cover. These findings can help target simultaneous strategies for UTC goals and environmental justice concerns.

ContributorsSchwarz, Kirsten (Author) / Fragkias, Michail (Author) / Boone, Christopher (Author) / Zhou, Weiqi (Author) / McHale, Melissa (Author) / Grove, J. Morgan (Author) / O'Neil-Dunne, Jarlath (Author) / McFadden, Joseph P. (Author) / Buckley, Geoffrey L. (Author) / Childers, Dan (Author) / Ogden, Laura (Author) / Pincetl, Stephanie Sabine, 1952- (Author) / Pataki, Diane (Author) / Whitmer, Ali (Author) / Cadenasso, Mary L. (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-04-01
128749-Thumbnail Image.png
Description

Much of the socioeconomic life in the United States occurs in its urban areas. While an urban economy is defined to a large extent by its network of occupational specializations, an examination of this important network is absent from the considerable body of work on the determinants of urban economic

Much of the socioeconomic life in the United States occurs in its urban areas. While an urban economy is defined to a large extent by its network of occupational specializations, an examination of this important network is absent from the considerable body of work on the determinants of urban economic performance. Here we develop a structure-based analysis addressing how the network of interdependencies among occupational specializations affects the ease with which urban economies can transform themselves. While most occupational specializations exhibit positive relationships between one another, many exhibit negative ones, and the balance between the two partially explains the productivity of an urban economy. The current set of occupational specializations of an urban economy and its location in the occupation space constrain its future development paths. Important tradeoffs exist between different alternatives for altering an occupational specialization pattern, both at a single occupation and an entire occupational portfolio levels.

Created2013-09-09
128748-Thumbnail Image.png
Description

The factors that account for the differences in the economic productivity of urban areas have remained difficult to measure and identify unambiguously. Here we show that a microscopic derivation of urban scaling relations for economic quantities vs. population, obtained from the consideration of social and infrastructural properties common to all

The factors that account for the differences in the economic productivity of urban areas have remained difficult to measure and identify unambiguously. Here we show that a microscopic derivation of urban scaling relations for economic quantities vs. population, obtained from the consideration of social and infrastructural properties common to all cities, implies an effective model of economic output in the form of a Cobb-Douglas type production function. As a result we derive a new expression for the Total Factor Productivity (TFP) of urban areas, which is the standard measure of economic productivity per unit of aggregate production factors (labor and capital). Using these results we empirically demonstrate that there is a systematic dependence of urban productivity on city population size, resulting from the mismatch between the size dependence of wages and labor, so that in contemporary US cities productivity increases by about 11% with each doubling of their population. Moreover, deviations from the average scale dependence of economic output, capturing the effect of local factors, including history and other local contingencies, also manifest surprising regularities. Although, productivity is maximized by the combination of high wages and low labor input, high productivity cities show invariably high wages and high levels of employment relative to their size expectation. Conversely, low productivity cities show both low wages and employment. These results shed new light on the microscopic processes that underlie urban economic productivity, explain the emergence of effective aggregate urban economic output models in terms of labor and capital inputs and may inform the development of economic theory related to growth.

Created2013-03-27
127958-Thumbnail Image.png
Description

An assessment framework was developed to evaluate and characterize material recovery facilities within the U.S. that process e-waste. The framework consists of five key categories including, facility overview, operating model and process flows, product flows, collection methods, and facility resource use. The results were used to conduct a material flow

An assessment framework was developed to evaluate and characterize material recovery facilities within the U.S. that process e-waste. The framework consists of five key categories including, facility overview, operating model and process flows, product flows, collection methods, and facility resource use. The results were used to conduct a material flow analysis to develop a representative set of end-of-life pathways (e.g., reuse, refurbish, recycle) to better understand the flow of e-waste in the end-of-life management industry. The majority of products collected was from business sector collection routes. The largest number of products (by units) collected at 90% of facilities was mobile phones. It was also seen that most products went directly to recycling for material recovery and were not in the condition to be re-used or refurbished.

Created2015-05-21
127949-Thumbnail Image.png
Description

The United State generates the most waste among OECD countries, and there are adverse effects of the waste generation. One of the most serious adverse effects is greenhouse gas, especially CH4, which causes global warming. However, the amount of waste generation is not decreasing, and the United State recycling rate,

The United State generates the most waste among OECD countries, and there are adverse effects of the waste generation. One of the most serious adverse effects is greenhouse gas, especially CH4, which causes global warming. However, the amount of waste generation is not decreasing, and the United State recycling rate, which could reduce waste generation, is only 26%, which is lower than other OECD countries. Thus, waste generation and greenhouse gas emission should decrease, and in order for that to happen, identifying the causes should be made a priority. The research objective is to verify whether the Environmental Kuznets Curve relationship is supported for waste generation and GDP across the U.S. Moreover, it also confirmed that total waste generation and recycling waste influences carbon dioxide emissions from the waste sector. The annual-based U.S. data from 1990 to 2012 were used. The data were collected from various data sources, and the Granger causality test was applied for identifying the causal relationships. The results showed that there is no causality between GDP and waste generation, but total waste and recycling generation significantly cause positive and negative greenhouse gas emissions from the waste sector, respectively. This implies that the waste generation will not decrease even if GDP increases. And, if waste generation decreases or recycling rate increases, the greenhouse gas emission will decrease. Based on these results, it is expected that the waste generation and carbon dioxide emission from the waste sector can decrease more efficiently.

ContributorsLee, Seungtaek (Author) / Kim, Jonghoon (Author) / Chong, Oswald (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20
127931-Thumbnail Image.png
Description

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste management methods. Although some authors and organizations have published rich guides addressing the DfD's principles, there are only a few buildings already developed in this area. This study aims to find the challenges in the current practice of deconstruction activities and the gaps between its theory and implementation. Furthermore, it aims to provide insights about how DfD can create opportunities to turn these concepts into strategies that can be largely adopted by the construction industry stakeholders in the near future.

ContributorsRios, Fernanda (Author) / Chong, Oswald (Author) / Grau, David (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-09-14
127929-Thumbnail Image.png
Description

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy models are bottom-up engineering models, meaning these models calculate energy

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy models are bottom-up engineering models, meaning these models calculate energy demand of individual buildings through their physical properties and energy use for specific end uses (e.g., lighting, appliances, and water heating). Researchers then scale up these model results to represent the building stock of the region studied.

Studies reveal that there is a lack of information about the building stock and associated modeling tools and this lack of knowledge affects the assessment of building energy efficiency strategies. Literature suggests that the level of complexity of energy models needs to be limited. Accuracy of these energy models can be elevated by reducing the input parameters, alleviating the need for users to make many assumptions about building construction and occupancy, among other factors. To mitigate the need for assumptions and the resulting model inaccuracies, the authors argue buildings should be described in a regional stock model with a restricted number of input parameters. One commonly-accepted method of identifying critical input parameters is sensitivity analysis, which requires a large number of runs that are both time consuming and may require high processing capacity.

This paper utilizes the Energy, Carbon and Cost Assessment for Buildings Stocks (ECCABS) model, which calculates the net energy demand of buildings and presents aggregated and individual- building-level, demand for specific end uses, e.g., heating, cooling, lighting, hot water and appliances. The model has already been validated using the Swedish, Spanish, and UK building stock data. This paper discusses potential improvements to this model by assessing the feasibility of using stepwise regression to identify the most important input parameters using the data from UK residential sector. The paper presents results of stepwise regression and compares these to sensitivity analysis; finally, the paper documents the advantages and challenges associated with each method.

ContributorsArababadi, Reza (Author) / Naganathan, Hariharan (Author) / Parrish, Kristen (Author) / Chong, Oswald (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14
127913-Thumbnail Image.png
Description

This study assesses whether multifunctional edible landscaping business models provide a sufficient business case at enterprise and city scales to justify widespread implementation. First, semi-structured interviews were conducted with four landscaping entrepreneurs, and the information obtained from the interviews was utilized to carry out a business model comparison with the

This study assesses whether multifunctional edible landscaping business models provide a sufficient business case at enterprise and city scales to justify widespread implementation. First, semi-structured interviews were conducted with four landscaping entrepreneurs, and the information obtained from the interviews was utilized to carry out a business model comparison with the Business Model Canvas framework. The comparison showed that the landscaping enterprises using multifunctional edible landscaping methods possessed a greater range of value propositions and revenue streams, enhancing their competitive advantage. Second, a GIS landscape analysis of seven Phoenix metro area cities was carried out to identify landscapes that were suited for becoming multifunctional edible landscapes. The GIS analysis identified single family residential, residential recreational open space, municipal parks, and municipal schools as being suitable landscapes, and that the area of these landscapes in the seven cities exceeded 180,000 acres. Third, scenarios were created using interview and GIS data to estimate potential value creation and return on investment of implementing multifunctional edible landscaping in the cities of interest. The scenarios found that the potential value creation of edible landscaping ranged between $3.9 and $66 billion, and that positive return on investment (ROI) could be achieved in 11 out of 12 scenarios within one to five years. Finally, the paper concludes by discussing potential long-term implications of implementing multifunctional edible urban landscaping, as well as possible future directions for multifunctional landscaping business model development and research.

Created2017-12-12
127964-Thumbnail Image.png
Description

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance. Given the large databases of OSHA historical events and reports, a manual analysis of the fatality and catastrophe investigations content is a time consuming and expensive process. This paper aims to evaluate the strength of unsupervised machine learning and Natural Language Processing (NLP) in supporting safety inspections and reorganizing accidents database on a state level. After collecting construction accident reports from the OSHA Arizona office, the methodology consists of preprocessing the accident reports and weighting terms in order to apply a data-driven unsupervised K-Means-based clustering approach. The proposed method classifies the collected reports in four clusters, each reporting a type of accident. The results show the construction accidents in the state of Arizona to be caused by falls (42.9%), struck by objects (34.3%), electrocutions (12.5%), and trenches collapse (10.3%). The findings of this research empower state and local agencies with a customized presentation of the accidents fitting their regulations and weather conditions. What is applicable to one climate might not be suitable for another; therefore, such rearrangement of the accidents database on a state based level is a necessary prerequisite to enhance the local safety applications and standards.

ContributorsChokor, Abbas (Author) / Naganathan, Hariharan (Author) / Chong, Oswald (Author) / El Asmar, Mounir (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20