This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 23
Filtering by

Clear all filters

141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
129538-Thumbnail Image.png
Description

Gompertz’s empirical equation remains the most popular one in describing cancer cell population growth in a wide spectrum of bio-medical situations due to its good fit to data and simplicity. Many efforts were documented in the literature aimed at understanding the mechanisms that may support Gompertz’s elegant model equation. One

Gompertz’s empirical equation remains the most popular one in describing cancer cell population growth in a wide spectrum of bio-medical situations due to its good fit to data and simplicity. Many efforts were documented in the literature aimed at understanding the mechanisms that may support Gompertz’s elegant model equation. One of the most convincing efforts was carried out by Gyllenberg and Webb. They divide the cancer cell population into the proliferative cells and the quiescent cells. In their two dimensional model, the dead cells are assumed to be removed from the tumor instantly. In this paper, we modify their model by keeping track of the dead cells remaining in the tumor. We perform mathematical and computational studies on this three dimensional model and compare the model dynamics to that of the model of Gyllenberg and Webb. Our mathematical findings suggest that if an avascular tumor grows according to our three-compartment model, then as the death rate of quiescent cells decreases to zero, the percentage of proliferative cells also approaches to zero. Moreover, a slow dying quiescent population will increase the size of the tumor. On the other hand, while the tumor size does not depend on the dead cell removal rate, its early and intermediate growth stages are very sensitive to it.

ContributorsAlzahrani, E. O. (Author) / Asiri, Asim (Author) / El-Dessoky, M. M. (Author) / Kuang, Yang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-01
128995-Thumbnail Image.png
Description

Background: Obesity is a metabolic disease caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are incompletely understood. The aim of our study was to investigate the role of skeletal muscle DNA methylation in combination with transcriptomic changes in obesity.

Results: Muscle biopsies were obtained basally from lean (n = 12; BMI = 23.4 ± 0.7

Background: Obesity is a metabolic disease caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are incompletely understood. The aim of our study was to investigate the role of skeletal muscle DNA methylation in combination with transcriptomic changes in obesity.

Results: Muscle biopsies were obtained basally from lean (n = 12; BMI = 23.4 ± 0.7 kg/m[superscript 2]) and obese (n = 10; BMI = 32.9 ± 0.7 kg/m[superscript 2]) participants in combination with euglycemic-hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing (RRBS) next-generation methylation and microarray analyses on DNA and RNA isolated from vastus lateralis muscle biopsies. There were 13,130 differentially methylated cytosines (DMC; uncorrected P < 0.05) that were altered in the promoter and untranslated (5' and 3'UTR) regions in the obese versus lean analysis. Microarray analysis revealed 99 probes that were significantly (corrected P < 0.05) altered. Of these, 12 genes (encompassing 22 methylation sites) demonstrated a negative relationship between gene expression and DNA methylation. Specifically, sorbin and SH3 domain containing 3 (SORBS3) which codes for the adapter protein vinexin was significantly decreased in gene expression (fold change −1.9) and had nine DMCs that were significantly increased in methylation in obesity (methylation differences ranged from 5.0 to 24.4 %). Moreover, differentially methylated region (DMR) analysis identified a region in the 5'UTR (Chr.8:22,423,530–22,423,569) of SORBS3 that was increased in methylation by 11.2 % in the obese group. The negative relationship observed between DNA methylation and gene expression for SORBS3 was validated by a site-specific sequencing approach, pyrosequencing, and qRT-PCR. Additionally, we performed transcription factor binding analysis and identified a number of transcription factors whose binding to the differentially methylated sites or region may contribute to obesity.

Conclusions: These results demonstrate that obesity alters the epigenome through DNA methylation and highlights novel transcriptomic changes in SORBS3 in skeletal muscle.

ContributorsDay, Samantha (Author) / Coletta, Rich (Author) / Kim, Joon Young (Author) / Campbell, Latoya (Author) / Benjamin, Tonya R. (Author) / Roust, Lori R. (Author) / De Filippis, Elena A. (Author) / Dinu, Valentin (Author) / Shaibi, Gabriel (Author) / Mandarino, Lawrence J. (Author) / Coletta, Dawn (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-18
128932-Thumbnail Image.png
Description

We have previously hypothesized a biological pathway of activity-dependent synaptic plasticity proteins that addresses the dual genetic and environmental contributions to schizophrenia. Accordingly, variations in the immediate early gene EGR3, and its target ARC, should influence schizophrenia susceptibility. We used a pooled Next-Generation Sequencing approach to identify variants across these

We have previously hypothesized a biological pathway of activity-dependent synaptic plasticity proteins that addresses the dual genetic and environmental contributions to schizophrenia. Accordingly, variations in the immediate early gene EGR3, and its target ARC, should influence schizophrenia susceptibility. We used a pooled Next-Generation Sequencing approach to identify variants across these genes in U.S. populations of European (EU) and African (AA) descent. Three EGR3 and one ARC SNP were selected and genotyped for validation, and three SNPs were tested for association in a replication cohort. In the EU group of 386 schizophrenia cases and 150 controls EGR3 SNP rs1877670 and ARC SNP rs35900184 showed significant associations (p = 0.0078 and p = 0.0275, respectively). In the AA group of 185 cases and 50 controls, only the ARC SNP revealed significant association (p = 0.0448). The ARC SNP did not show association in the Han Chinese (CH) population. However, combining the EU, AA, and CH groups revealed a highly significant association of ARC SNP rs35900184 (p = 2.353 x 10-7; OR [95% CI] = 1.54 [1.310–1.820]). These findings support previously reported associations between EGR3 and schizophrenia. Moreover, this is the first report associating an ARC SNP with schizophrenia and supports recent large-scale GWAS findings implicating the ARC complex in schizophrenia risk. These results support the need for further investigation of the proposed pathway of environmentally responsive, synaptic plasticity-related, schizophrenia genes.

ContributorsHuentelman, Matthew J. (Author) / Muppana, Leela (Author) / Courneveaux, Jason J. (Author) / Dinu, Valentin (Author) / Pruzin, Jeremy J. (Author) / Reiman, Rebecca (Author) / Borish, Cassie N. (Author) / De Both, Matt (Author) / Ahmed, Amber (Author) / Todorov, Alexandre (Author) / Cloninger, C. Robert (Author) / Zhang, Rui (Author) / Ma, Jie (Author) / Gallitano, Amelia L. (Author) / College of Health Solutions (Contributor)
Created2015-10-16
128958-Thumbnail Image.png
Description

Background: Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research questions. In addition to classifying samples based on disease status, the complex patterns and latent factors underlying immunosignatures, which we attempt

Background: Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research questions. In addition to classifying samples based on disease status, the complex patterns and latent factors underlying immunosignatures, which we attempt to model, may have a diverse range of applications.

Methods: We investigate the utility of a number of statistical methods to determine model performance and address challenges inherent in analyzing immunosignatures. Some of these methods include exploratory and confirmatory factor analyses, classical significance testing, structural equation and mixture modeling.

Results: We demonstrate an ability to classify samples based on disease status and show that immunosignaturing is a very promising technology for screening and presymptomatic screening of disease. In addition, we are able to model complex patterns and latent factors underlying immunosignatures. These latent factors may serve as biomarkers for disease and may play a key role in a bioinformatic method for antibody discovery.

Conclusion: Based on this research, we lay out an analytic framework illustrating how immunosignatures may be useful as a general method for screening and presymptomatic screening of disease as well as antibody discovery.

ContributorsBrown, Justin (Author) / Stafford, Phillip (Author) / Johnston, Stephen (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2011-08-19
129066-Thumbnail Image.png
Description

Background: Glioblastoma is the most aggressive primary central nervous tumor and carries a very poor prognosis. Invasion precludes effective treatment and virtually assures tumor recurrence. In the current study, we applied analytical and bioinformatics approaches to identify a set of microRNAs (miRs) from several different human glioblastoma cell lines that exhibit

Background: Glioblastoma is the most aggressive primary central nervous tumor and carries a very poor prognosis. Invasion precludes effective treatment and virtually assures tumor recurrence. In the current study, we applied analytical and bioinformatics approaches to identify a set of microRNAs (miRs) from several different human glioblastoma cell lines that exhibit significant differential expression between migratory (edge) and migration-restricted (core) cell populations. The hypothesis of the study is that differential expression of miRs provides an epigenetic mechanism to drive cell migration and invasion.

Results: Our research data comprise gene expression values for a set of 805 human miRs collected from matched pairs of migratory and migration-restricted cell populations from seven different glioblastoma cell lines. We identified 62 down-regulated and 2 up-regulated miRs that exhibit significant differential expression in the migratory (edge) cell population compared to matched migration-restricted (core) cells. We then conducted target prediction and pathway enrichment analysis with these miRs to investigate potential associated gene and pathway targets. Several miRs in the list appear to directly target apoptosis related genes. The analysis identifies a set of genes that are predicted by 3 different algorithms, further emphasizing the potential validity of these miRs to promote glioblastoma.

Conclusions: The results of this study identify a set of miRs with potential for decreased expression in invasive glioblastoma cells. The verification of these miRs and their associated targeted proteins provides new insights for further investigation into therapeutic interventions. The methodological approaches employed here could be applied to the study of other diseases to provide biomedical researchers and clinicians with increased opportunities for therapeutic interventions.

ContributorsBradley, Barrie (Author) / Loftus, Joseph C. (Author) / Mielke, Clinton (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2014-01-18
129068-Thumbnail Image.png
Description

Background: The discovery of genetic associations is an important factor in the understanding of human illness to derive disease pathways. Identifying multiple interacting genetic mutations associated with disease remains challenging in studying the etiology of complex diseases. And although recently new single nucleotide polymorphisms (SNPs) at genes implicated in immune response,

Background: The discovery of genetic associations is an important factor in the understanding of human illness to derive disease pathways. Identifying multiple interacting genetic mutations associated with disease remains challenging in studying the etiology of complex diseases. And although recently new single nucleotide polymorphisms (SNPs) at genes implicated in immune response, cholesterol/lipid metabolism, and cell membrane processes have been confirmed by genome-wide association studies (GWAS) to be associated with late-onset Alzheimer's disease (LOAD), a percentage of AD heritability continues to be unexplained. We try to find other genetic variants that may influence LOAD risk utilizing data mining methods.

Methods: Two different approaches were devised to select SNPs associated with LOAD in a publicly available GWAS data set consisting of three cohorts. In both approaches, single-locus analysis (logistic regression) was conducted to filter the data with a less conservative p-value than the Bonferroni threshold; this resulted in a subset of SNPs used next in multi-locus analysis (random forest (RF)). In the second approach, we took into account prior biological knowledge, and performed sample stratification and linkage disequilibrium (LD) in addition to logistic regression analysis to preselect loci to input into the RF classifier construction step.

Results: The first approach gave 199 SNPs mostly associated with genes in calcium signaling, cell adhesion, endocytosis, immune response, and synaptic function. These SNPs together with APOE and GAB2 SNPs formed a predictive subset for LOAD status with an average error of 9.8% using 10-fold cross validation (CV) in RF modeling. Nineteen variants in LD with ST5, TRPC1, ATG10, ANO3, NDUFA12, and NISCH respectively, genes linked directly or indirectly with neurobiology, were identified with the second approach. These variants were part of a model that included APOE and GAB2 SNPs to predict LOAD risk which produced a 10-fold CV average error of 17.5% in the classification modeling.

Conclusions: With the two proposed approaches, we identified a large subset of SNPs in genes mostly clustered around specific pathways/functions and a smaller set of SNPs, within or in proximity to five genes not previously reported, that may be relevant for the prediction/understanding of AD.

ContributorsBriones, Natalia (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2012-01-25
127929-Thumbnail Image.png
Description

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy models are bottom-up engineering models, meaning these models calculate energy

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy models are bottom-up engineering models, meaning these models calculate energy demand of individual buildings through their physical properties and energy use for specific end uses (e.g., lighting, appliances, and water heating). Researchers then scale up these model results to represent the building stock of the region studied.

Studies reveal that there is a lack of information about the building stock and associated modeling tools and this lack of knowledge affects the assessment of building energy efficiency strategies. Literature suggests that the level of complexity of energy models needs to be limited. Accuracy of these energy models can be elevated by reducing the input parameters, alleviating the need for users to make many assumptions about building construction and occupancy, among other factors. To mitigate the need for assumptions and the resulting model inaccuracies, the authors argue buildings should be described in a regional stock model with a restricted number of input parameters. One commonly-accepted method of identifying critical input parameters is sensitivity analysis, which requires a large number of runs that are both time consuming and may require high processing capacity.

This paper utilizes the Energy, Carbon and Cost Assessment for Buildings Stocks (ECCABS) model, which calculates the net energy demand of buildings and presents aggregated and individual- building-level, demand for specific end uses, e.g., heating, cooling, lighting, hot water and appliances. The model has already been validated using the Swedish, Spanish, and UK building stock data. This paper discusses potential improvements to this model by assessing the feasibility of using stepwise regression to identify the most important input parameters using the data from UK residential sector. The paper presents results of stepwise regression and compares these to sensitivity analysis; finally, the paper documents the advantages and challenges associated with each method.

ContributorsArababadi, Reza (Author) / Naganathan, Hariharan (Author) / Parrish, Kristen (Author) / Chong, Oswald (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14
127931-Thumbnail Image.png
Description

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste management methods. Although some authors and organizations have published rich guides addressing the DfD's principles, there are only a few buildings already developed in this area. This study aims to find the challenges in the current practice of deconstruction activities and the gaps between its theory and implementation. Furthermore, it aims to provide insights about how DfD can create opportunities to turn these concepts into strategies that can be largely adopted by the construction industry stakeholders in the near future.

ContributorsRios, Fernanda (Author) / Chong, Oswald (Author) / Grau, David (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-09-14