This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 17
Filtering by

Clear all filters

162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
127882-Thumbnail Image.png
Description

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results.

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results. Consequently, excess energy has to be generated to prevent blackout; causes for energy surge are not easily determined; and potential energy use reduction from energy efficiency solutions is usually not translated into actual energy use reduction. The paper highlights the weaknesses of traditional techniques, and lays out a framework to improve the prediction of energy demand by combining energy use models of equipment, physical systems and buildings, with the proposed data mining algorithms for reverse engineering. The research team first analyses data samples from large complex energy data, and then, presents a set of computationally efficient data mining algorithms for reverse engineering. In order to develop a structural system model for reverse engineering, two focus groups are developed that has direct relation with cause and effect variables. The research findings of this paper includes testing out different sets of reverse engineering algorithms, understand their output patterns and modify algorithms to elevate accuracy of the outputs.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Ye, Long (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-12-09
127878-Thumbnail Image.png
Description

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach and a web-based retrofit toolkit tested on a case study in Arizona, this methodology was able to save about 50% of the total energy consumed by the case study building, depending on the adopted measures and invested capital. While the case study presented is a deep energy retrofit, the proposed framework is effective in guiding the decision-making process that precedes any energy retrofit, deep or light.

ContributorsRios, Fernanda (Author) / Parrish, Kristen (Author) / Chong, Oswald (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127865-Thumbnail Image.png
Description

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external and internal factors. Modern large scale sensor measures some physical signals to monitor real-time system behaviors. Such data has the potentials to detect anomalies, identify consumption patterns, and analyze peak loads. The paper proposes a novel method to detect hidden anomalies in commercial building energy consumption system. The framework is based on Hilbert-Huang transform and instantaneous frequency analysis. The objectives are to develop an automated data pre-processing system that can detect anomalies and provide solutions with real-time consumption database using Ensemble Empirical Mode Decomposition (EEMD) method. The finding of this paper will also include the comparisons of Empirical mode decomposition and Ensemble empirical mode decomposition of three important type of institutional buildings.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Huang, Zigang (Author) / Cheng, Ying (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127833-Thumbnail Image.png
Description

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data continues to grow, new data analysis methods are needed to address the increasing complexity. Using data from the energy loss

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data continues to grow, new data analysis methods are needed to address the increasing complexity. Using data from the energy loss between the supply (energy production sources) and demand (buildings and cities consumption), this paper proposes a Semi-Supervised Energy Model (SSEM) to analyse different loss factors for a building cluster. This is done by deep machine learning by training machines to semi-supervise the learning, understanding and manage the process of energy losses. Semi-Supervised Energy Model (SSEM) aims at understanding the demand-supply characteristics of a building cluster and utilizes the confident unlabelled data (loss factors) using deep machine learning techniques. The research findings involves sample data from one of the university campuses and presents the output, which provides an estimate of losses that can be reduced. The paper also provides a list of loss factors that contributes to the total losses and suggests a threshold value for each loss factor, which is determined through real time experiments. The conclusion of this paper provides a proposed energy model that can provide accurate numbers on energy demand, which in turn helps the suppliers to adopt such a model to optimize their supply strategies.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Chen, Xue-wen (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14
128741-Thumbnail Image.png
Description

Rapid identification of facial expressions can profoundly affect social interactions, yet most research to date has focused on static rather than dynamic expressions. In four experiments, we show that when a non-expressive face becomes expressive, happiness is detected more rapidly anger. When the change occurs peripheral to the focus of

Rapid identification of facial expressions can profoundly affect social interactions, yet most research to date has focused on static rather than dynamic expressions. In four experiments, we show that when a non-expressive face becomes expressive, happiness is detected more rapidly anger. When the change occurs peripheral to the focus of attention, however, dynamic anger is better detected when it appears in the left visual field (LVF), whereas dynamic happiness is better detected in the right visual field (RVF), consistent with hemispheric differences in the processing of approach- and avoidance-relevant stimuli. The central advantage for happiness is nevertheless the more robust effect, persisting even when information of either high or low spatial frequency is eliminated. Indeed, a survey of past research on the visual search for emotional expressions finds better support for a happiness detection advantage, and the explanation may lie in the coevolution of the signal and the receiver.

ContributorsBecker, David (Author) / Neel, Rebecca (Author) / Srinivasan, Narayanan (Author) / Neufeld, Samantha (Author) / Kumar, Devpriya (Author) / Fouse, Shannon (Author) / Department of Psychology (Author)
Created2012-01-11
128963-Thumbnail Image.png
Description

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education.

Methods: In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson’s chi-square test, Student’s t-test, and Spearman’s correlation. Open-ended questions sought insight into perceived barriers and benefits.

Results: Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care.

Conclusion: North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

ContributorsHidaka, Brandon H. (Author) / Asghar, Anila (Author) / Aktipis, C. Athena (Author) / Nesse, Randolph (Author) / Wolpaw, Terry M. (Author) / Skursky, Nicole K. (Author) / Bennett, Katelyn J. (Author) / Beyrouty, Matthew W. (Author) / Schwartz, Mark D. (Author) / Department of Psychology (Contributor)
Created2015-03-08
129368-Thumbnail Image.png
Description

Mexican Americans are one of the largest and fastest growing ethnic groups in the United States, yet we have limited knowledge regarding changes (i.e., developmental trajectories) in cultural orientation based upon their exposure to the Mexican American and mainstream cultures. We examined the parallel trajectories of Mexican American and mainstream

Mexican Americans are one of the largest and fastest growing ethnic groups in the United States, yet we have limited knowledge regarding changes (i.e., developmental trajectories) in cultural orientation based upon their exposure to the Mexican American and mainstream cultures. We examined the parallel trajectories of Mexican American and mainstream cultural values in a sample of 749 Mexican American adolescents (49% female) across assessments during the fifth grade (approximately 11 years of age), the seventh grade (approximately 13 years of age) and the tenth grade (approximately 16 years of age). We expected that these values would change over this developmental period and this longitudinal approach is more appropriate than the often used median split classification to identify distinct types of acculturation. We found four distinct acculturation trajectory groups: two trajectory groups that were increasing slightly with age in the endorsement of mainstream cultural values, one of which was relatively stable in Mexican American cultural values while the other was declining in their endorsement of these values; and two trajectory groups that were declining substantially with age in their endorsement of mainstream cultural values, one of which was also declining in Mexican American cultural values and the other which was stable in these values. These four trajectory groups differed in expected ways on a number of theoretically related cultural variables, but were not highly consistent with the median split classifications. The findings highlight the need to utilize longitudinal data to examine the developmental changes of Mexican American individual’s adaptation to the ethnic and mainstream culture in order to understand more fully the processes of acculturation and enculturation.

ContributorsKnight, George (Author) / Basilio, Camille (Author) / Cham, Heining (Author) / Gonzales, Nancy (Author) / Liu, Yu (Author) / Umana-Taylor, Adriana (Author) / Department of Psychology (Contributor)
Created2014-12-01
129336-Thumbnail Image.png
Description

Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures

Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures in recognition memory. Quantifying similarity, however, is challenging when everyday items are the desired stimulus set, particularly when researchers require several different pictures from the same category. In this article, we document a new multidimensional scaling database with similarity ratings for 240 categories, each containing color photographs of 16–17 exemplar objects. We collected similarity ratings using the spatial arrangement method. Reports include: the multidimensional scaling solutions for each category, up to five dimensions, stress and fit measures, coordinate locations for each stimulus, and two new classifications. For each picture, we categorized the item's prototypicality, indexed by its proximity to other items in the space. We also classified pairs of images along a continuum of similarity, by assessing the overall arrangement of each MDS space. These similarity ratings will be useful to any researcher that wishes to control the similarity of experimental stimuli according to an objective quantification of “sameness.”

ContributorsHout, Michael C. (Author) / Goldinger, Stephen (Author) / Brady, Kyle (Author) / Department of Psychology (Contributor)
Created2014-11-12
129458-Thumbnail Image.png
Description

The Gratton effect, the observation that the size of the Stroop effect is larger following a congruent trial compared to an incongruent trial, is one pivotal observation in support of the conflict-monitoring hypothesis. Previous reports have demonstrated that non-conflict components, such as feature binding, also contribute to this effect. Critically,

The Gratton effect, the observation that the size of the Stroop effect is larger following a congruent trial compared to an incongruent trial, is one pivotal observation in support of the conflict-monitoring hypothesis. Previous reports have demonstrated that non-conflict components, such as feature binding, also contribute to this effect. Critically, Schmidt and De Houwer (2011) report a flanker task and a button-press Stroop task suggesting that there is no conflict adaptation in the Gratton effect; it is entirely caused by feature binding. The current investigation attempts to replicate and extend this important finding across two experiments using a canonical four-choice Stroop task with vocal responses. In contrast to Schmidt and De Houwer, we observe reliable conflict adaptation after controlling for feature binding. We argue that the overall strength of conflict is critical for determining whether a conflict adaptation component will remain in the Gratton effect after explaining binding components.

ContributorsBlais, Christopher (Author) / Stefanidi, Aikaterini (Author) / Brewer, Gene (Author) / Department of Psychology (Contributor)
Created2014-10-24