This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 32
Filtering by

Clear all filters

141468-Thumbnail Image.png
Description

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that are more specific to the archaeological cases: i) societal choices are influenced by robustness–vulnerability trade-offs, ii) there is interplay between robustness–vulnerability trade-offs and robustness–performance trade-offs, iii) societies often get locked in to particular strategies, and iv) multiple positive feedbacks escalate the perceived cost of societal change. We then discuss whether these lock-in traps can be prevented or whether the risks associated with them can be mitigated. We conclude by highlighting how these long-term historical studies can help us to understand current society, societal practices, and the nexus between ecology and society.

ContributorsSchoon, Michael (Author) / Fabricius, Christo (Author) / Anderies, John (Author) / Nelson, Margaret (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011
129492-Thumbnail Image.png
Description

As part of an international collaboration to compare large-scale commons, we used the Social-Ecological Systems Meta-Analysis Database (SESMAD) to systematically map out attributes of and changes in the Great Barrier Reef Marine Park (GBRMP) in Australia. We focus on eight design principles from common-pool resource (CPR) theory and other key

As part of an international collaboration to compare large-scale commons, we used the Social-Ecological Systems Meta-Analysis Database (SESMAD) to systematically map out attributes of and changes in the Great Barrier Reef Marine Park (GBRMP) in Australia. We focus on eight design principles from common-pool resource (CPR) theory and other key social-ecological systems governance variables, and explore to what extent they help explain the social and ecological outcomes of park management through time. Our analysis showed that commercial fisheries management and the re-zoning of the GBRMP in 2004 led to improvements in ecological condition of the reef, particularly fisheries. These boundary and rights changes were supported by effective monitoring, sanctioning and conflict resolution. Moderate biophysical connectivity was also important for improved outcomes. However, our analysis also highlighted that continued challenges to improved ecological health in terms of coral cover and biodiversity can be explained by fuzzy boundaries between land and sea, and the significance of external drivers to even large-scale social-ecological systems (SES). While ecological and institutional fit in the marine SES was high, this was not the case when considering the coastal SES. Nested governance arrangements become even more important at this larger scale. To our knowledge, our paper provides the first analysis linking the re-zoning of the GBRMP to CPR and SES theory. We discuss important challenges to coding large-scale systems for meta-analysis.

Created2013-11-30
129493-Thumbnail Image.png
Description

The Montreal Protocol is generally credited as a successful example of international cooperation in response to a global environmental problem. As a result, the production and consumption of ozone-depleting substances has declined rapidly, and it is expected that atmospheric ozone concentrations will return to their normal ranges toward the end

The Montreal Protocol is generally credited as a successful example of international cooperation in response to a global environmental problem. As a result, the production and consumption of ozone-depleting substances has declined rapidly, and it is expected that atmospheric ozone concentrations will return to their normal ranges toward the end of this century. This paper applies the social-ecological system framework and common-pool resource theory to explore the congruence between successful resolution of small-scale appropriation problems and ozone regulation, a large-scale pollution problem. The results of our analysis correspond closely to past studies of the Protocol that highlight the importance of attributes such as a limited number of major industrial producers, advances in scientific knowledge, and the availability of technological substitutes. However, in contrast to previous theoretical accounts that focus on one or a few variables, our analysis suggests that its success may have been the result of interactions between a wider range of SES attributes, many of which are associated with successful small-scale environmental governance. Although carefully noting the limitations of drawing conclusions from the analysis of a single case, our analysis reveals the potential for fruitful interplay between common-pool resource theory and large-scale pollution problems.

ContributorsEpstein, Graham (Author) / Perez Ibarra, Irene (Author) / Schoon, Michael (Author) / Meek, Chanda L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129379-Thumbnail Image.png
Description

The purpose of the United Nations-guided process to establish Sustainable Development Goals is to galvanize governments and civil society to rise to the interlinked environmental, societal, and economic challenges we face in the Anthropocene. We argue that the process of setting Sustainable Development Goals should take three key aspects into

The purpose of the United Nations-guided process to establish Sustainable Development Goals is to galvanize governments and civil society to rise to the interlinked environmental, societal, and economic challenges we face in the Anthropocene. We argue that the process of setting Sustainable Development Goals should take three key aspects into consideration. First, it should embrace an integrated social-ecological system perspective and acknowledge the key dynamics that such systems entail, including the role of ecosystems in sustaining human wellbeing, multiple cross-scale interactions, and uncertain thresholds. Second, the process needs to address trade-offs between the ambition of goals and the feasibility in reaching them, recognizing biophysical, social, and political constraints. Third, the goal-setting exercise and the management of goal implementation need to be guided by existing knowledge about the principles, dynamics, and constraints of social change processes at all scales, from the individual to the global. Combining these three aspects will increase the chances of establishing and achieving effective Sustainable Development Goals.

ContributorsNorstrom, Albert V. (Author) / Dannenberg, Astrid (Author) / McCarney, Geoff (Author) / Milkoreit, Manjana (Author) / Diekert, Florian (Author) / Engstrom, Gustav (Author) / Fishman, Ram (Author) / Gars, Johan (Author) / Kyriakopoolou, Efthymia (Author) / Manoussi, Vassiliki (Author) / Meng, Kyle (Author) / Metian, Marc (Author) / Sanctuary, Mark (Author) / Schluter, Maja (Author) / Schoon, Michael (Author) / Schultz, Lisen (Author) / Sjostedt, Martin (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
129247-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Ray (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-30
128868-Thumbnail Image.png
Description

Previously, our group engineered a plant-derived monoclonal antibody (MAb) (pHu-E16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed several pHu-E16 variants to improve its efficacy. These variants included a single-chain variable fragment (scFv) of pHu-E16 fused to the heavy chain (HC) constant domains

Previously, our group engineered a plant-derived monoclonal antibody (MAb) (pHu-E16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed several pHu-E16 variants to improve its efficacy. These variants included a single-chain variable fragment (scFv) of pHu-E16 fused to the heavy chain (HC) constant domains (CH1-3) of human IgG (pHu-E16scFv-CH1-3) and a tetravalent molecule (Tetra pHu-E16) assembled from pHu-E16scFv-CH1-3 with a second pHu-E16scFv fused to the light chain (LC) constant region. pHu-E16scFv-CH1-3 and Tetra pHu-E16 were efficiently expressed and assembled in plants. To assess the impact of differences in N-linked glycosylation on pHu-E16 variant assembly and function, we expressed additional pHu-E16 variants with various combinations of HC and LC components.

Our study revealed that proper pairing of HC and LC was essential for the complete N-glycan processing of antibodies in both plant and animal cells. Associated with their distinct N-glycoforms, pHu-E16, pHu-E16scFv-CH1-3 and Tetra pHu-E16 exhibited differential binding to C1q and specific Fcγ receptors (FcγR). Notably, none of the plant-derived Hu-E16 variants showed antibody-dependent enhancement (ADE) activity in CD32A+ human cells, suggesting the potential of plant-produced antibodies to minimize the adverse effect of ADE. Importantly, all plant-derived MAb variants exhibited at least equivalent in vitro neutralization and in vivo protection in mice compared to mammalian cell-produced Hu-E16. This study demonstrates the capacity of plants to express and assemble a large, complex and functional IgG-like tetravalent mAb variant and also provides insight into the relationship between MAb N-glycosylation, FcγR and C1q binding, and ADE. These new insights may allow the development of safer and cost effective MAb-based therapeutics for flaviviruses, and possibly other pathogens.

ContributorsHe, Junyun (Author) / Lai, Huafang (Author) / Gorlatov, Sergey (Author) / Gruber, Clemens (Author) / Steinkellner, Herta (Author) / Diamond, Michael S. (Author) / Chen, Qiang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-03-27
128998-Thumbnail Image.png
Description

Background: While prior studies have quantified the mortality burden of the 1957 H2N2 influenza pandemic at broad geographic regions in the United States, little is known about the pandemic impact at a local level. Here we focus on analyzing the transmissibility and mortality burden of this pandemic in Arizona, a setting

Background: While prior studies have quantified the mortality burden of the 1957 H2N2 influenza pandemic at broad geographic regions in the United States, little is known about the pandemic impact at a local level. Here we focus on analyzing the transmissibility and mortality burden of this pandemic in Arizona, a setting where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.

Methods: Using archival death certificates from 1954 to 1961, we quantified the age-specific seasonal patterns, excess-mortality rates, and transmissibility patterns of the 1957 H2N2 pandemic in Maricopa County, Arizona. By applying cyclical Serfling linear regression models to weekly mortality rates, the excess-mortality rates due to respiratory and all-causes were estimated for each age group during the pandemic period. The reproduction number was quantified from weekly data using a simple growth rate method and assumed generation intervals of 3 and 4 days. Local newspaper articles published during 1957–1958 were also examined.

Results: Excess-mortality rates varied between waves, age groups, and causes of death, but overall remained low. From October 1959-June 1960, the most severe wave of the pandemic, the absolute excess-mortality rate based on respiratory deaths per 10,000 population was 16.59 in the elderly (≥65 years). All other age groups exhibit very low excess-mortality and the typical U-shaped age-pattern was absent. However, the standardized mortality ratio was greatest (4.06) among children and young adolescents (5–14 years) from October 1957-March 1958, based on mortality rates of respiratory deaths. Transmissibility was greatest during the same 1957–1958 period, when the mean reproduction number was estimated at 1.08–1.11, assuming 3- or 4-day generation intervals with exponential or fixed distributions.

Conclusions: Maricopa County exhibited very low mortality impact associated with the 1957 influenza pandemic. Understanding the relatively low excess-mortality rates and transmissibility in Maricopa County during this historic pandemic may help public health officials prepare for and mitigate future outbreaks of influenza.

ContributorsCobos, April (Author) / Nelson, Clinton (Author) / Jehn, Megan (Author) / Viboud, Cecile (Author) / Chowell-Puente, Gerardo (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-11
Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2015-04-13
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric). After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2014-02
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12