This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 34
Filtering by

Clear all filters

Description

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to the reaction center, where charge separation takes place. The average number of DNA three-arm junctions per reaction center was tuned from 0.75 to 2.35. This DNA-templated multichromophore system serves as a modular light-harvesting antenna that is capable of being optimized for its spectral properties, energy transfer efficiency, and photostability, allowing one to adjust both the size and spectrum of the resulting structures. This may serve as a useful test bed for developing nanostructured photonic systems.

ContributorsDutta, Palash (Author) / Levenberg, Symon (Author) / Loskutov, Andrey (Author) / Jun, Daniel (Author) / Saer, Rafael (Author) / Beatty, J. Thomas (Author) / Lin, Su (Author) / Liu, Yan (Author) / Woodbury, Neal (Author) / Yan, Hao (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-11-26
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
Description

The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or

The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV.

Created2015-05-01
127848-Thumbnail Image.png
Description

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in library-based applications. Here we describe a simple approach for sequence analysis directly on solid surfaces that is both high speed and high throughput, utilizing equipment available in most protein analysis facilities. In this approach, surface bound peptides, selectively labeled at their N-termini with a positive charge-bearing group, are subjected to controlled degradation in ammonia gas, resulting in a set of fragments differing by a single amino acid that remain spatially confined on the surface they were bound to. These fragments can then be analyzed by MALDI mass spectrometry, and the peptide sequences read directly from the resulting spectra.

ContributorsZhao, Zhan-Gong (Author) / Cordovez, Lalaine Anne (Author) / Johnston, Stephen (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2017-12-19
128868-Thumbnail Image.png
Description

Previously, our group engineered a plant-derived monoclonal antibody (MAb) (pHu-E16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed several pHu-E16 variants to improve its efficacy. These variants included a single-chain variable fragment (scFv) of pHu-E16 fused to the heavy chain (HC) constant domains

Previously, our group engineered a plant-derived monoclonal antibody (MAb) (pHu-E16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed several pHu-E16 variants to improve its efficacy. These variants included a single-chain variable fragment (scFv) of pHu-E16 fused to the heavy chain (HC) constant domains (CH1-3) of human IgG (pHu-E16scFv-CH1-3) and a tetravalent molecule (Tetra pHu-E16) assembled from pHu-E16scFv-CH1-3 with a second pHu-E16scFv fused to the light chain (LC) constant region. pHu-E16scFv-CH1-3 and Tetra pHu-E16 were efficiently expressed and assembled in plants. To assess the impact of differences in N-linked glycosylation on pHu-E16 variant assembly and function, we expressed additional pHu-E16 variants with various combinations of HC and LC components.

Our study revealed that proper pairing of HC and LC was essential for the complete N-glycan processing of antibodies in both plant and animal cells. Associated with their distinct N-glycoforms, pHu-E16, pHu-E16scFv-CH1-3 and Tetra pHu-E16 exhibited differential binding to C1q and specific Fcγ receptors (FcγR). Notably, none of the plant-derived Hu-E16 variants showed antibody-dependent enhancement (ADE) activity in CD32A+ human cells, suggesting the potential of plant-produced antibodies to minimize the adverse effect of ADE. Importantly, all plant-derived MAb variants exhibited at least equivalent in vitro neutralization and in vivo protection in mice compared to mammalian cell-produced Hu-E16. This study demonstrates the capacity of plants to express and assemble a large, complex and functional IgG-like tetravalent mAb variant and also provides insight into the relationship between MAb N-glycosylation, FcγR and C1q binding, and ADE. These new insights may allow the development of safer and cost effective MAb-based therapeutics for flaviviruses, and possibly other pathogens.

ContributorsHe, Junyun (Author) / Lai, Huafang (Author) / Gorlatov, Sergey (Author) / Gruber, Clemens (Author) / Steinkellner, Herta (Author) / Diamond, Michael S. (Author) / Chen, Qiang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-03-27
128867-Thumbnail Image.png
Description

Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate

Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 107 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

ContributorsZhang, Xiangmin (Author) / Kong, Wei (Author) / Wanda, Soo-Young (Author) / Xin, Wei (Author) / Alamuri, Praveen (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-03-05
128845-Thumbnail Image.png
Description

Natural killer (NK) cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ) contributes to the control of early exponential replication of bacterial pathogens,

Natural killer (NK) cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ) contributes to the control of early exponential replication of bacterial pathogens, however the regulation of these events remains poorly resolved. Using a mouse model of invasive Salmonellosis, here we report that the activation of the intracellular danger sensor NLRC4 by Salmonella-derived flagellin within CD11c+ cells regulates early IFN-γ secretion by NK cells through the provision of interleukin 18 (IL-18), independently of Toll-like receptor (TLR)-signaling. Although IL18-signalling deficient NK cells improved host protection during S. Typhimurium infection, this increased resistance was inferior to that provided by wild-type NK cells. These findings suggest that although NLRC4 inflammasome-driven secretion of IL18 serves as a potent activator of NK cell mediated IFN-γ secretion, IL18-independent NK cell-mediated mechanisms of IFN-γ secretion contribute to in vivo control of Salmonella replication.

Created2014-05-14
128828-Thumbnail Image.png
Description

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial preparations prior to clinical trials.

Created2014-01-29
128827-Thumbnail Image.png
Description

Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion

Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion (Δlrp) and constitutive-lrp expression (lrpC) mutant strains. In this work, we used chromosomal PfimA-lacZ fusions and yeast agglutination assays to confirm and extend our previous results. Direct binding of Lrp to PfimA was shown by an electrophoretic mobility shift assay (EMSA) and DNA footprinting assay. Site-directed mutagenesis revealed that the Lrp-binding motifs in PfimA play a role in both activation and repression of type 1 fimbriae production. Overproduction of Lrp also abrogates fimZ expression. EMSA data showed that Lrp and FimZ proteins independently bind to PfimA without competitive exclusion. In addition, both Lrp and FimZ binding to PfimA caused a hyper retardation (supershift) of the DNA-protein complex compared to the shift when each protein was present alone. Nutrition-dependent cellular Lrp levels closely correlated with the amount of type 1 fimbriae production. These observations suggest that Lrp plays important roles in type 1 fimbriation by acting as both a positive and negative regulator and its effect depends, at least in part, on the cellular concentration of Lrp in response to the nutritional environment.

ContributorsBaek, Chang-Ho (Author) / Kang, Ho-Young (Author) / Roland, Kenneth (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2011-10-28
129320-Thumbnail Image.png
Description

Researchers have iterated that the future of synthetic biology and biotechnology lies in novel consumer applications of crossing biology with engineering. However, if the new biology's future is to be sustainable, early and serious efforts must be made towards social sustainability. Therefore, the crux of new applications of synthetic biology

Researchers have iterated that the future of synthetic biology and biotechnology lies in novel consumer applications of crossing biology with engineering. However, if the new biology's future is to be sustainable, early and serious efforts must be made towards social sustainability. Therefore, the crux of new applications of synthetic biology and biotechnology is public understanding and acceptance. The RASVaccine is a novel recombinant design not found in nature that re-engineers a common bacteria ( Salmonella) to produce a strong immune response in humans. Synthesis of the RASVaccine has the potential to improve public health as an inexpensive, non-injectable product. But how can scientists move forward to create a dialogue of creating a 'common sense' of this new technology in order to promote social sustainability? This paper delves into public issues raised around these novel technologies and uses the RASVaccine as an example of meeting the public with a common sense of its possibilities and limitations.

ContributorsDankel, Dorothy J. (Author) / Roland, Kenneth (Author) / Fisher, Michael (Author) / Brenneman, Karen (Author) / Delgado, Ana (Author) / Santander, Javier (Author) / Baek, Chang-Ho (Author) / Clark-Curtiss, Josephine (Author) / Strand, Roger (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-08-01