This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 34
Filtering by

Clear all filters

127870-Thumbnail Image.png
Description

Zeolitic Imidazolate Frameworks (ZIFs) are one of the potential candidates as highly conducting networks with surface area with a possibility to be used as catalyst support. In the present study, highly active state-of-the-art Pt-NCNTFs catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing Ar-H2 (90-10 %) gas

Zeolitic Imidazolate Frameworks (ZIFs) are one of the potential candidates as highly conducting networks with surface area with a possibility to be used as catalyst support. In the present study, highly active state-of-the-art Pt-NCNTFs catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing Ar-H2 (90-10 %) gas at 700 °C. XRD analysis indicated the formation of Pt-Co alloy on the surface of the nanostructured catalyst support. The high resolution TEM examination showed the particle size range of 7 to 10 nm. Proton exchange membrane fuel cell performance was evaluated by fabricating membrane electrode assemblies using Nafion-212 electrolyte using H2/O2 gases (100 % RH) at various temperatures. The peak power density of 630 mW.cm2 was obtained with Pt-NCNTFs cathode catalyst and commercial Pt/C anode catalyst at 70 °C at ambient pressure.

Created2017-11-16
128737-Thumbnail Image.png
Description

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of individuals with metabolic syndrome. We further wanted to examine whether similar relationships that we have found previously in skeletal muscle exist in peripheral whole blood cells. All subjects (n=184) were Latino descent from the Arizona Insulin Resistance registry. Subjects were classified based on the metabolic syndrome phenotype according to the National Cholesterol Education Program’s Adult Treatment Panel III. Of the 184 Latino subjects in the study, 74 were classified with the metabolic syndrome and 110 were without. Whole blood gene expression profiling was performed using the Agilent 4x44K Whole Human Genome Microarray. Whole blood microarray analysis identified 1,432 probes that were altered in expression ≥1.2 fold and P<0.05 after Benjamini-Hochberg in the metabolic syndrome subjects. KEGG pathway analysis revealed significant enrichment for pathways including ribosome, oxidative phosphorylation and MAPK signaling (all Benjamini-Hochberg P<0.05). Whole blood mRNA expression changes observed in the microarray data were confirmed by quantitative RT-PCR. Transcription factor binding motif enrichment analysis revealed E2F1, ELK1, NF-kappaB, STAT1 and STAT3 significantly enriched after Bonferroni correction (all P<0.05). The results of the present study demonstrate that whole blood is a useful tissue for studying the metabolic syndrome and its underlying insulin resistance although the relationship between blood and skeletal muscle differs.

ContributorsTangen, Samantha (Author) / Tsinajinnie, Darwin (Author) / Nunez, Martha (Author) / Shaibi, Gabriel (Author) / Mandarino, Lawrence (Author) / Coletta, Dawn (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-17
128253-Thumbnail Image.png
Description

The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different

The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons.

ContributorsSmith, Jason F. (Author) / Chen, Kewei (Author) / Pillai, Ajay S. (Author) / Horwitz, Barry (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-05-14
127885-Thumbnail Image.png
Description

Research has shown that construction projects in Saudi Arabia have exhibited poor performance for the past three decades. The traditional risk management practices have been ineffective at helping contractors deliver projects on time and within budget while meeting quality expectations. Studies have identified that client decision making is one of

Research has shown that construction projects in Saudi Arabia have exhibited poor performance for the past three decades. The traditional risk management practices have been ineffective at helping contractors deliver projects on time and within budget while meeting quality expectations. Studies have identified that client decision making is one of the main causes of risks that occur on projects in Saudi Arabia. This paper proposes a new risk management model that can minimize client decision making, and enable the client to utilize expertise, thereby improving project quality and performance. The model is derived from the Information Measurement Theory (IMT) and Performance Information Procurement System (PIPS), both developed at Arizona State University in the United States (U.S.). The model has been tested over 1800 times in both construction and non-construction projects, showing a decrease in required management by owner by up to 80% and an increase in efficiency up to 40%.

ContributorsAlgahtany, Mohammed (Author) / Alhammadi, Yasir (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127884-Thumbnail Image.png
Description

A typical building construction process runs through three main consecutive phases: design, construction and operation. Currently, architects and engineers both engage in the creation of environmental designs that adequately reflect high performance through sustainability and energy efficiency in new buildings. Occupants of buildings have also recently demonstrated a dramatic increase

A typical building construction process runs through three main consecutive phases: design, construction and operation. Currently, architects and engineers both engage in the creation of environmental designs that adequately reflect high performance through sustainability and energy efficiency in new buildings. Occupants of buildings have also recently demonstrated a dramatic increase in awareness regarding building operation, energy usage, and indoor air quality. The process of building construction is chronologically located between both the design and the operation phases. However, this phase has not yet been addressed in either understanding contractor behavior or developing innovative sustainable techniques. These two vital aspects have the potential to levy a dramatic impact on enhancing building performance and operational costs.

Repeatedly causing apprehension to the construction industry is a question that posits, “Why is there a gap/delta/inconsistency between the designed EUI, Energy Use Intensity, and the operational EUI”? Building occupants shall not be the only party that bears blame for the delta in energy. It is true, nonetheless, that occupants are part of the reason, but the contractor – as well as the entire construction phase - also remain prime suspects worth investigating. In the present time, research is predominantly focused on occupants (post-occupancy) and designers to educate and control the gap between designed and operational EUI. This research has succeeded in the identification of the construction phase, in conjunction with contractor behavior, as another main factor for initiating this energy gap. Therefore, not only is the coupling of sustainable strategies to the construction drivers crucial to attaining a sustainable project, but also it is integral to analyzing contractor behavior within each of the construction phases that play a vital role in successfully serving sustainability. Various techniques and approaches will assist contractors in amending their method statements to ensure a sustainable project.

This research correlates an existing project to the two proposed sustainable concepts: 1) Identify cost-saving strategies that may have been implemented or avoided during the construction process, and 2) Evaluate the impacts of implementing these strategies on overall performance. The adopted contexts are to partially foster sustainable architecture concepts to the Contractor process, and then proceed to analyze its cost implication on overall project performance. Results of the validation of this approach verify that when contractors embrace a sustainable construction process the overall project will yield various financial savings. A mixed-use project was utilized to validate these concepts, which indicated three outcomes: firstly, a 25% decrease in manpower for tiling while maintaining the same productivity, thus reflecting a saving of $3,500; next, increasing the productivity of concrete activity, which would shorten the duration of the construction by 45 days and reflect a saving of $1.5 million, and last of all, reducing the overhead costs of labor camps by efficiently orienting temporary shelters, which reveals a reduction in cooling and heating that returned a saving of approximately $10,000. This research develops a comprehensive evidence-based study that addresses the above-mentioned gap in the construction phase, which targets to yield a multi-dimensional tool that will allow: 1) integrating critical thinking and decision-making approaches regarding contractor behavior, and 2) adopting innovative sustainable construction methods that reflect reduction in operating costs.

ContributorsElzomor, Mohamed (Author) / Parrish, Kristen (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127882-Thumbnail Image.png
Description

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results.

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results. Consequently, excess energy has to be generated to prevent blackout; causes for energy surge are not easily determined; and potential energy use reduction from energy efficiency solutions is usually not translated into actual energy use reduction. The paper highlights the weaknesses of traditional techniques, and lays out a framework to improve the prediction of energy demand by combining energy use models of equipment, physical systems and buildings, with the proposed data mining algorithms for reverse engineering. The research team first analyses data samples from large complex energy data, and then, presents a set of computationally efficient data mining algorithms for reverse engineering. In order to develop a structural system model for reverse engineering, two focus groups are developed that has direct relation with cause and effect variables. The research findings of this paper includes testing out different sets of reverse engineering algorithms, understand their output patterns and modify algorithms to elevate accuracy of the outputs.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Ye, Long (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-12-09
127879-Thumbnail Image.png
Description

Brazil has had issues in efficiently providing the required amount of electricity to its citizens at a low cost. One of the main causes to the decreasing performance of energy is due to reoccurring droughts that decrease the power generated by hydroelectric facilities. To compensate for the decrease, Brazil brought

Brazil has had issues in efficiently providing the required amount of electricity to its citizens at a low cost. One of the main causes to the decreasing performance of energy is due to reoccurring droughts that decrease the power generated by hydroelectric facilities. To compensate for the decrease, Brazil brought into use thermal power plants. The power plants being on average 23.7% more expensive than hydroelectric. Wind energy is potentially an alternative source of energy to compensate for the energy decrease during droughts. Brazil has invested in wind farms recently, but, due to issues with the delivery method, only 34% of wind farms are operational. This paper reviews the potential benefit Brazil could receive from investing more resources into developing and operating wind farms. It also proposes that utilization of the best value approach in delivering wind farms could produce operational wind farms quicker and more efficiently than previously experienced.

ContributorsOliveira, Carlos (Author) / Zulanas, Charles (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127878-Thumbnail Image.png
Description

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach and a web-based retrofit toolkit tested on a case study in Arizona, this methodology was able to save about 50% of the total energy consumed by the case study building, depending on the adopted measures and invested capital. While the case study presented is a deep energy retrofit, the proposed framework is effective in guiding the decision-making process that precedes any energy retrofit, deep or light.

ContributorsRios, Fernanda (Author) / Parrish, Kristen (Author) / Chong, Oswald (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127865-Thumbnail Image.png
Description

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external and internal factors. Modern large scale sensor measures some physical signals to monitor real-time system behaviors. Such data has the potentials to detect anomalies, identify consumption patterns, and analyze peak loads. The paper proposes a novel method to detect hidden anomalies in commercial building energy consumption system. The framework is based on Hilbert-Huang transform and instantaneous frequency analysis. The objectives are to develop an automated data pre-processing system that can detect anomalies and provide solutions with real-time consumption database using Ensemble Empirical Mode Decomposition (EEMD) method. The finding of this paper will also include the comparisons of Empirical mode decomposition and Ensemble empirical mode decomposition of three important type of institutional buildings.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Huang, Zigang (Author) / Cheng, Ying (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127857-Thumbnail Image.png
Description

A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation.

A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation. The proposed method is applied to model commute mode choice among four alternatives (auto, transit, bicycle and walk) using travel behavior data from Argau, Switzerland. Comparisons between the multinomial logit model and the proposed semi-nonparametric model show that violations of the standard Gumbel distribution assumption lead to considerable inconsistency in parameter estimates and model inferences.

ContributorsWang, Ke (Author) / Ye, Xin (Author) / Pendyala, Ram (Author) / Zou, Yajie (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017-10-26