This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 31
Filtering by

Clear all filters

141484-Thumbnail Image.png
Description

Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults

Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

ContributorsHruschka, Daniel (Author) / Hadley, Craig (Author) / Brewis, Alexandra (Author) / Stojanowski, Christopher (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-27
141490-Thumbnail Image.png
Description

Background: The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the recruitment,

Background: The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the recruitment, data collection, and data analytic protocols for the SPARC (Social impact of Physical Activity and nutRition in College) study, a longitudinal examination of the mechanisms by which friends and friendship networks influence nutrition and physical activity behaviors and weight gain in the transition to college life.

Methods: The SPARC study aims to follow 1450 university freshmen from a large university over an academic year, collecting data on multiple aspects of friends and friendship networks. Integrating multiple types of data related to student lives, ecological momentary assessments (EMAs) are administered via a cell phone application, devilSPARC. EMAs collected in four 1-week periods (a total of 4 EMA waves) are integrated with linked data from web-based surveys and anthropometric measurements conducted at four times points (for a total of eight data collection periods including EMAs, separated by ~1 month). University databases will provide student card data, allowing integration of both time-dated data on food purchasing, use of physical activity venues, and geographical information system (GIS) locations of these activities relative to other students in their social networks.

Discussion: Findings are intended to guide the development of more effective interventions to enhance behaviors among college students that protect against weight gain during college.

ContributorsBruening, Meg (Author) / Ohri-Vachaspati, Punam (Author) / Brewis, Alexandra (Author) / Laska, Melissa (Author) / Todd, Michael (Author) / Hruschka, Daniel (Author) / Schaefer, David (Author) / Whisner, Corrie (Author) / Dunton, Genevieve (Author) / College of Health Solutions (Contributor)
Created2016-08-30
141495-Thumbnail Image.png
Description

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrin (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π* transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D4h symmetry at ground state, a C4v symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.

ContributorsTheisen, Rebekah (Author) / Huang, Liang (Author) / Fleetham, Tyler (Author) / Adams, James (Author) / Li, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-07
128253-Thumbnail Image.png
Description

The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different

The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons.

ContributorsSmith, Jason F. (Author) / Chen, Kewei (Author) / Pillai, Ajay S. (Author) / Horwitz, Barry (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-05-14
128390-Thumbnail Image.png
Description

We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in

We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on–off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.

ContributorsHuang, Liang (Author) / Ni, Xuan (Author) / Ditto, William L. (Author) / Spano, Mark (Author) / Carney, Paul R. (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-01-18
128554-Thumbnail Image.png
Description

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these

Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.

ContributorsJiang, Junjie (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Liu, Huan (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-04-12
129058-Thumbnail Image.png
Description

Background: Improving perinatal health is the key to achieving the Millennium Development Goal for child survival. Recently, several reviews suggest that scaling up available effective perinatal interventions in an integrated approach can substantially reduce the stillbirth and neonatal death rates worldwide. We evaluated the effect of packaged interventions given in pregnancy,

Background: Improving perinatal health is the key to achieving the Millennium Development Goal for child survival. Recently, several reviews suggest that scaling up available effective perinatal interventions in an integrated approach can substantially reduce the stillbirth and neonatal death rates worldwide. We evaluated the effect of packaged interventions given in pregnancy, delivery and post-partum periods through integration of community- and facility-based services on perinatal mortality.

Methods: This study took advantage of an ongoing health and demographic surveillance system (HDSS) and a new Maternal, Neonatal and Child Health (MNCH) Project initiated in 2007 in Matlab, Bangladesh in half (intervention area) of the HDSS area. In the other half, women received usual care through the government health system (comparison area). The MNCH Project strengthened ongoing maternal and child health services as well as added new services. The intervention followed a continuum of care model for pregnancy, intrapartum, and post-natal periods by improving established links between community- and facility-based services. With a separate pre-post samples design, we compared the perinatal mortality rates between two periods--before (2005-2006) and after (2008-2009) implementation of MNCH interventions. We also evaluated the difference-of-differences in perinatal mortality between intervention and comparison areas.

Results: Antenatal coverage, facility delivery and cesarean section rates were significantly higher in the post- intervention period in comparison with the period before intervention. In the intervention area, the odds of perinatal mortality decreased by 36% between the pre-intervention and post-intervention periods (odds ratio: 0.64; 95% confidence intervals: 0.52-0.78). The reduction in the intervention area was also significant relative to the reduction in the comparison area (OR 0.73, 95% CI: 0.56-0.95; P = 0.018).

Conclusion: The continuum of care approach provided through the integration of service delivery modes decreased the perinatal mortality rate within a short period of time. Further testing of this model is warranted within the government health system in Bangladesh and other low-income countries.

ContributorsRahman, Anisur (Author) / Moran, Allisyn (Author) / Pervin, Jesmin (Author) / Rahman, Aminur (Author) / Rahman, Monjur (Author) / Yeasmin, Sharifa (Author) / Begum, Hosneara (Author) / Rashid, Harunor (Author) / Yunus, Mohammad (Author) / Hruschka, Daniel (Author) / Arifeen, Shams E. (Author) / Streatfield, Peter K. (Author) / Sibley, Lynn (Author) / Bhuiya, Abbas (Author) / Koblinsky, Marge (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-12-10
128763-Thumbnail Image.png
Description

Purpose: PET (positron emission tomography) imaging researches of functional metabolism using fluorodeoxyglucose ([superscript 18]F-FDG) of animal brain are important in neuroscience studies. FDG-PET imaging studies are often performed on groups of rats, so it is desirable to establish an objective voxel-based statistical methodology for group data analysis.

Material and Methods: This study establishes

Purpose: PET (positron emission tomography) imaging researches of functional metabolism using fluorodeoxyglucose ([superscript 18]F-FDG) of animal brain are important in neuroscience studies. FDG-PET imaging studies are often performed on groups of rats, so it is desirable to establish an objective voxel-based statistical methodology for group data analysis.

Material and Methods: This study establishes a statistical parametric mapping (SPM) toolbox (plug-ins) named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain, in which an FDG-PET template and an intracranial mask image of rat brain in Paxinos & Watson space were constructed, and the default settings were modified according to features of rat brain. Compared to previous studies, our constructed rat brain template comprises not only the cerebrum and cerebellum, but also the whole olfactory bulb which made the later cognitive studies much more exhaustive. And with an intracranial mask image in the template space, the brain tissues of individuals could be extracted automatically. Moreover, an atlas space is used for anatomically labeling the functional findings in the Paxinos & Watson space. In order to standardize the template image with the atlas accurately, a synthetic FDG-PET image with six main anatomy structures is constructed from the atlas, which performs as a target image in the co-registration.

Results: The spatial normalization procedure is evaluated, by which the individual rat brain images could be standardized into the Paxinos & Watson space successfully and the intracranial tissues could also be extracted accurately. The practical usability of this toolbox is evaluated using FDG-PET functional images from rats with left side middle cerebral artery occlusion (MCAO) in comparison to normal control rats. And the two-sample t-test statistical result is almost related to the left side MCA.

Conclusion: We established a toolbox of SPM8 named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain.

ContributorsNie, Binbin (Author) / Liu, Hua (Author) / Chen, Kewei (Author) / Jiang, Xiaofeng (Author) / Shan, Baoci (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-26
129686-Thumbnail Image.png
Description

Much research has established reliable cross-population differences in motivations to invest in one's in-group. We compare two current historical-evolutionary hypotheses for this variation based on (1) effective large-scale institutions and (2) pathogen threats by analyzing cross-national differences (N = 122) in in-group preferences measured in three ways. We find that

Much research has established reliable cross-population differences in motivations to invest in one's in-group. We compare two current historical-evolutionary hypotheses for this variation based on (1) effective large-scale institutions and (2) pathogen threats by analyzing cross-national differences (N = 122) in in-group preferences measured in three ways. We find that the effectiveness of government institutions correlates with favoring in-group members, even when controlling for pathogen stress and world region, assessing reverse causality, and providing a check on endogeneity with an instrumental variable analysis. Conversely, pathogen stress shows inconsistent associations with in-group favoritism when controlling for government effectiveness. Moreover, pathogen stress shows little to no association with in-group favoritism within major world regions whereas government effectiveness does. These results suggest that variation in in-group preferences across contemporary nation-states is more consistent with a generalized response to institutions that meet basic needs rather than an evolved response dedicated to pathogens.

ContributorsHruschka, Daniel (Author) / Henrich, Joseph (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-05-21