This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 26
Filtering by

Clear all filters

128899-Thumbnail Image.png
Description

Background: Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.

Objective: To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated

Background: Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.

Objective: To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans.

Methods: Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion.

Results: Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile – 3rd quartile)] between Control and BCAA in either the 40U ([199 (167–278) vs. 186 (94–308)] or 80 U ([491 (414–548) vs. 478 (409–857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P < 0.05) with no differences between Control and BCAA in either of the experiments (P > 0.05).

ContributorsEverman, Sarah (Author) / Mandarino, Lawrence (Author) / Carroll, Chad C. (Author) / Katsanos, Christos (Author) / College of Health Solutions (Contributor)
Created2015-03-17
129022-Thumbnail Image.png
Description

Background: Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection,

Background: Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection, mutation, and migration.

Results: Here we model the evolution of blindness in caves. This model captures the interaction of three forces: (1) selection favoring alleles causing blindness, (2) immigration of sightedness alleles from a surface population, and (3) mutations creating blindness alleles. We investigated the dynamics of this model and determined selection-strength thresholds that result in blindness evolving in caves despite immigration of sightedness alleles from the surface. We estimate that the selection coefficient for blindness would need to be at least 0.005 (and maybe as high as 0.5) for blindness to evolve in the model cave-organism, Astyanax mexicanus.

Conclusions: Our results indicate that strong selection is required for the evolution of blindness in cave-dwelling organisms, which is consistent with recent work suggesting a high metabolic cost of eye development.

ContributorsCartwright, Reed (Author) / Schwartz, Rachel (Author) / Merry, Alexandra (Author) / Howell, Megan (Author) / Biodesign Institute (Contributor)
Created2017-02-07
128113-Thumbnail Image.png
Description

Objective: To assess the informational, educational and instrumental environments among Mexican healthcare settings for their potential to promote physical activity (PA).

Materials and Methods: The Environmental Physical Activity Assessment Tool for Healthcare Settings (EPATHS) was developed to assess the PA environments of 40 clinics/hospitals representing the three Mexican healthcare systems in

Objective: To assess the informational, educational and instrumental environments among Mexican healthcare settings for their potential to promote physical activity (PA).

Materials and Methods: The Environmental Physical Activity Assessment Tool for Healthcare Settings (EPATHS) was developed to assess the PA environments of 40 clinics/hospitals representing the three Mexican healthcare systems in Guadalajara. The EPATHS assessed the presence and quality of PA enhancing features in the informational (e.g. signage),educational (e.g. pamphlets), and instrumental (e.g. stairs)environments of included clinics/hospitals.

Results: 28 (70%) clinics/hospitals had more than one floor with stairs; 60% of these had elevators. Nearly 90% of stairs were visible, accessible and clean compared to fewer than 30% of elevators. Outdoor spaces were observed in just over half (55%) of clinics/hospitals, and most (70%) were of good quality. Only 25% clinics/hospitals had educational PA materials.

Conclusions: The PA instrumental environment of Mexican healthcare settings is encouraging. The informational and educational environments could improve.

Created2015-09
128249-Thumbnail Image.png
Description

Objective: This cross sectional study aims to determine the effects of gender and parental perception of safety at school on children’s physical activity (PA) levels.

Materials and Methods: Parents of school aged Mexican children residing in Guadalajara, Mexico City, and Puerto Vallarta, completed surveys about their children’s PA measures. The physical

Objective: This cross sectional study aims to determine the effects of gender and parental perception of safety at school on children’s physical activity (PA) levels.

Materials and Methods: Parents of school aged Mexican children residing in Guadalajara, Mexico City, and Puerto Vallarta, completed surveys about their children’s PA measures. The physical activity indicators were evaluated using linear and logistical regression models.

Results: Analysis did not indicate that gender moderated the relationship between parental perception of safety and PA measures, but significant gender issues exist with girls participating less than boys in the three measures of PA in this study (p<0.001).

Conclusion: Results suggest the need for additional interventions promoting physical activity in girls in Mexico.

Created2016-01
128348-Thumbnail Image.png
Description

The most common evolutionary events at the molecular level are single-base substitutions, as well as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little

The most common evolutionary events at the molecular level are single-base substitutions, as well as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little has been done to model indel dynamics, probably due to the difficulty in writing explicit likelihood functions. Here, we contribute to the effort of modeling indel dynamics by presenting SpartaABC, an approximate Bayesian computation (ABC) approach to infer indel parameters from sequence data (either aligned or unaligned). SpartaABC circumvents the need to use an explicit likelihood function by extracting summary statistics from simulated sequences. First, summary statistics are extracted from the input sequence data. Second, SpartaABC samples indel parameters from a prior distribution and uses them to simulate sequences. Third, it computes summary statistics from the simulated sets of sequences. By computing a distance between the summary statistics extracted from the input and each simulation, SpartaABC can provide an approximation to the posterior distribution of indel parameters as well as point estimates. We study the performance of our methodology and show that it provides accurate estimates of indel parameters in simulations. We next demonstrate the utility of SpartaABC by studying the impact of alignment errors on the inference of positive selection. A C ++ program implementing SpartaABC is freely available in http://spartaabc.tau.ac.il.

ContributorsLevy Karin, Eli (Author) / Shkedy, Dafna (Author) / Ashkenazy, Haim (Author) / Cartwright, Reed (Author) / Pupko, Tal (Author) / Biodesign Institute (Contributor)
Created2017-05-01
128403-Thumbnail Image.png
Description

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized measure of gene flow. To test this prediction, we model local dispersal of haploid individuals on a two-dimensional landscape using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular, gamma, Lomax and Pareto. When neighborhood size is held constant, the distributions produce similar patterns of isolation-by-distance, confirming predictions. Considering this, we propose that the triangular distribution is the appropriate null distribution for isolation-by-distance studies. Under the triangular distribution, dispersal is uniform over the neighborhood area which suggests that the common description of neighborhood size as a measure of an effective, local panmictic population is valid for popular families of dispersal distributions. We further show how to draw random variables from the triangular distribution efficiently and argue that it should be utilized in other studies in which computational efficiency is important.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-29
127983-Thumbnail Image.png
Description

Mutation is the ultimate source of all genetic variation and is, therefore, central to evolutionary change. Previous work on Paramecium tetraurelia found an unusually low germline base-substitution mutation rate in this ciliate. Here, we tested the generality of this result among ciliates using Tetrahymena thermophila. We sequenced the genomes of

Mutation is the ultimate source of all genetic variation and is, therefore, central to evolutionary change. Previous work on Paramecium tetraurelia found an unusually low germline base-substitution mutation rate in this ciliate. Here, we tested the generality of this result among ciliates using Tetrahymena thermophila. We sequenced the genomes of 10 lines of T. thermophila that had each undergone approximately 1,000 generations of mutation accumulation (MA). We applied an existing mutation-calling pipeline and developed a new probabilistic mutation detection approach that directly models the design of an MA experiment and accommodates the noise introduced by mismapped reads. Our probabilistic mutation-calling method provides a straightforward way of estimating the number of sites at which a mutation could have been called if one was present, providing the denominator for our mutation rate calculations. From these methods, we find that T. thermophila has a germline base-substitution mutation rate of 7.61 × 10 -12 per-site, per cell division, which is consistent with the low base-substitution mutation rate in P. tetraurelia. Over the course of the evolution experiment, genomic exclusion lines derived from the MA lines experienced a fitness decline that cannot be accounted for by germline base-substitution mutations alone, suggesting that other genetic or epigenetic factors must be involved. Because selection can only operate to reduce mutation rates based upon the "visible" mutational load, asexual reproduction with a transcriptionally silent germline may allow ciliates to evolve extremely low germline mutation rates.

ContributorsLong, Hongan (Author) / Winter, David (Author) / Chang, Allan Y.-C. (Author) / Sung, Way (Author) / Wu, Steven (Author) / Balboa, Mariel (Author) / Azevedo, Ricardo B. R. (Author) / Cartwright, Reed (Author) / Lynch, Michael (Author) / Zufall, Rebecca A. (Author) / Biodesign Institute (Contributor)
Created2016-09-15
127891-Thumbnail Image.png
Description

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI).

Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor)
Created2017-11-24
128617-Thumbnail Image.png
Description

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.

ContributorsWinter, David (Author) / Pacheco, Maria Andreina (Author) / Vallejo, Andres F. (Author) / Schwartz, Rachel (Author) / Arevalo-Herrera, Myriam (Author) / Herrera, Socrates (Author) / Cartwright, Reed (Author) / Escalante, Ananias (Author) / Biodesign Institute (Contributor)
Created2015-12-28
128633-Thumbnail Image.png
Description

Background: Low physical activity (PA) and fruit and vegetable (F&V) consumption in early childhood are continued public health challenges. This manuscript describes outcomes from two pilot studies for Sustainability via Active Garden Education (SAGE), a program designed to increase PA and F&V consumption among 3 to 5 year old children.

Methods: SAGE was

Background: Low physical activity (PA) and fruit and vegetable (F&V) consumption in early childhood are continued public health challenges. This manuscript describes outcomes from two pilot studies for Sustainability via Active Garden Education (SAGE), a program designed to increase PA and F&V consumption among 3 to 5 year old children.

Methods: SAGE was developed using community-based participatory research (CBPR) and delivered to children (N = 89) in early care and education centers (ECEC, N = 6) in two US cities. Children participated in 12 one-hour sessions that included songs, games, and interactive learning activities involving garden maintenance and taste tests. We evaluated reach, efficacy, adoption, implementation, and potential for maintenance of SAGE following the RE-AIM framework. Reach was evaluated by comparing demographic characteristics among SAGE participants and residents of target geographic areas. Efficacy was evaluated with accelerometer-measured PA, F&V consumption, and eating in the absence of hunger among children, parenting practices regarding PA, and home availability of F&V. Adoption was evaluated by the number of ECEC that participated relative to the number of ECEC that were recruited. Implementation was evaluated by completion rates of planned SAGE lessons and activities, and potential for maintenance was evaluated with a parent satisfaction survey.

Results: SAGE reached ECEC in neighborhoods representing a wide range of socioeconomic status, with participants’ sociodemographic characteristics representing those of the intervention areas. Children significantly increased PA during SAGE lessons compared to usual lessons, but they also consumed more calories in the absence of hunger in post- vs. pre-intervention tests (both p < .05). Parent reports did not suggest changes in F&V consumption, parenting PA practices, or home F&V availability, possibly due to low parent engagement. ECEC had moderate-to-high implementation of SAGE lessons and curriculum. Potential for maintenance was strong, with parents rating SAGE favorably and reporting increases in knowledge about PA and nutrition guidelines for young children.

Conclusions: SAGE successfully translated national PA guidelines to practice for young children but was less successful with nutrition guidelines. High adoption and implementation and favorable parent reports suggest high potential for program sustainability. Further work to engage parents and families of young children in ECEC-based PA and nutrition programming is needed.

Created2017-03-10