This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 46
Filtering by

Clear all filters

127870-Thumbnail Image.png
Description

Zeolitic Imidazolate Frameworks (ZIFs) are one of the potential candidates as highly conducting networks with surface area with a possibility to be used as catalyst support. In the present study, highly active state-of-the-art Pt-NCNTFs catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing Ar-H2 (90-10 %) gas

Zeolitic Imidazolate Frameworks (ZIFs) are one of the potential candidates as highly conducting networks with surface area with a possibility to be used as catalyst support. In the present study, highly active state-of-the-art Pt-NCNTFs catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing Ar-H2 (90-10 %) gas at 700 °C. XRD analysis indicated the formation of Pt-Co alloy on the surface of the nanostructured catalyst support. The high resolution TEM examination showed the particle size range of 7 to 10 nm. Proton exchange membrane fuel cell performance was evaluated by fabricating membrane electrode assemblies using Nafion-212 electrolyte using H2/O2 gases (100 % RH) at various temperatures. The peak power density of 630 mW.cm2 was obtained with Pt-NCNTFs cathode catalyst and commercial Pt/C anode catalyst at 70 °C at ambient pressure.

Created2017-11-16
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
Description

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment,

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment, we use a utilitarian formulation of agent decision making to explore conditions that support the emergence of cooperative behavior. Our results indicate that cooperation levels are significantly lower for larger groups in contrast to the original pure strategy model. Here, defection behavior not only diminishes the public good, but also affects the expectations of group members leading conditional co-operators to change their strategies. Hence defection has a more damaging effect when decisions are based on expectations and not only pure strategies.

Created2014-07-01
Description

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our understanding of such complex systems. However, the data at our disposal are often not easily comparable, have limited scope and scale, and are based on disparate underlying frameworks inhibiting synthesis, meta-analysis, and the validation of findings. Research efforts are further hampered when case inclusion criteria, variable definitions, coding schema, and inter-coder reliability testing are not made explicit in the presentation of research and shared among the research community. This paper first outlines challenges experienced by researchers engaged in a large-scale coding project; then highlights valuable lessons learned; and finally discusses opportunities for further research on comparative case study analysis focusing on social-ecological systems and common pool resources. Includes supplemental materials and appendices published in the International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016.

ContributorsRatajczyk, Elicia (Author) / Brady, Ute (Author) / Baggio, Jacopo (Author) / Barnett, Allain J. (Author) / Perez Ibarra, Irene (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
Description

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards understanding multiple-causation of CPR outcomes by analyzing 1) the co-occurrence of Design Principles (DP) by activity (irrigation, fishery and forestry), and 2) the combination(s) of DPs leading to social and ecological success. We analyzed 69 cases pertaining to three different activities: irrigation, fishery, and forestry. We find that the importance of the design principles is dependent upon the natural and hard human made infrastructure (i.e. canals, equipment, vessels etc.). For example, clearly defined social boundaries are important when the natural infrastructure is highly mobile (i.e. tuna fish), while monitoring is more important when the natural infrastructure is more static (i.e. forests or water contained within an irrigation system). However, we also find that congruence between local conditions and rules and proportionality between investment and extraction are key for CPR success independent from the natural and human hard made infrastructure. We further provide new visualization techniques for co-occurrence patterns and add to qualitative comparative analysis by introducing a reliability metric to deal with a large meta-analysis dataset on secondary data where information is missing or uncertain.

Includes supplemental materials and appendices publications in International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016

ContributorsBaggio, Jacopo (Author) / Barnett, Alain J. (Author) / Perez, Irene (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-09-09
128617-Thumbnail Image.png
Description

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.

ContributorsWinter, David (Author) / Pacheco, Maria Andreina (Author) / Vallejo, Andres F. (Author) / Schwartz, Rachel (Author) / Arevalo-Herrera, Myriam (Author) / Herrera, Socrates (Author) / Cartwright, Reed (Author) / Escalante, Ananias (Author) / Biodesign Institute (Contributor)
Created2015-12-28
127891-Thumbnail Image.png
Description

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI).

Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor)
Created2017-11-24
127885-Thumbnail Image.png
Description

Research has shown that construction projects in Saudi Arabia have exhibited poor performance for the past three decades. The traditional risk management practices have been ineffective at helping contractors deliver projects on time and within budget while meeting quality expectations. Studies have identified that client decision making is one of

Research has shown that construction projects in Saudi Arabia have exhibited poor performance for the past three decades. The traditional risk management practices have been ineffective at helping contractors deliver projects on time and within budget while meeting quality expectations. Studies have identified that client decision making is one of the main causes of risks that occur on projects in Saudi Arabia. This paper proposes a new risk management model that can minimize client decision making, and enable the client to utilize expertise, thereby improving project quality and performance. The model is derived from the Information Measurement Theory (IMT) and Performance Information Procurement System (PIPS), both developed at Arizona State University in the United States (U.S.). The model has been tested over 1800 times in both construction and non-construction projects, showing a decrease in required management by owner by up to 80% and an increase in efficiency up to 40%.

ContributorsAlgahtany, Mohammed (Author) / Alhammadi, Yasir (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127884-Thumbnail Image.png
Description

A typical building construction process runs through three main consecutive phases: design, construction and operation. Currently, architects and engineers both engage in the creation of environmental designs that adequately reflect high performance through sustainability and energy efficiency in new buildings. Occupants of buildings have also recently demonstrated a dramatic increase

A typical building construction process runs through three main consecutive phases: design, construction and operation. Currently, architects and engineers both engage in the creation of environmental designs that adequately reflect high performance through sustainability and energy efficiency in new buildings. Occupants of buildings have also recently demonstrated a dramatic increase in awareness regarding building operation, energy usage, and indoor air quality. The process of building construction is chronologically located between both the design and the operation phases. However, this phase has not yet been addressed in either understanding contractor behavior or developing innovative sustainable techniques. These two vital aspects have the potential to levy a dramatic impact on enhancing building performance and operational costs.

Repeatedly causing apprehension to the construction industry is a question that posits, “Why is there a gap/delta/inconsistency between the designed EUI, Energy Use Intensity, and the operational EUI”? Building occupants shall not be the only party that bears blame for the delta in energy. It is true, nonetheless, that occupants are part of the reason, but the contractor – as well as the entire construction phase - also remain prime suspects worth investigating. In the present time, research is predominantly focused on occupants (post-occupancy) and designers to educate and control the gap between designed and operational EUI. This research has succeeded in the identification of the construction phase, in conjunction with contractor behavior, as another main factor for initiating this energy gap. Therefore, not only is the coupling of sustainable strategies to the construction drivers crucial to attaining a sustainable project, but also it is integral to analyzing contractor behavior within each of the construction phases that play a vital role in successfully serving sustainability. Various techniques and approaches will assist contractors in amending their method statements to ensure a sustainable project.

This research correlates an existing project to the two proposed sustainable concepts: 1) Identify cost-saving strategies that may have been implemented or avoided during the construction process, and 2) Evaluate the impacts of implementing these strategies on overall performance. The adopted contexts are to partially foster sustainable architecture concepts to the Contractor process, and then proceed to analyze its cost implication on overall project performance. Results of the validation of this approach verify that when contractors embrace a sustainable construction process the overall project will yield various financial savings. A mixed-use project was utilized to validate these concepts, which indicated three outcomes: firstly, a 25% decrease in manpower for tiling while maintaining the same productivity, thus reflecting a saving of $3,500; next, increasing the productivity of concrete activity, which would shorten the duration of the construction by 45 days and reflect a saving of $1.5 million, and last of all, reducing the overhead costs of labor camps by efficiently orienting temporary shelters, which reveals a reduction in cooling and heating that returned a saving of approximately $10,000. This research develops a comprehensive evidence-based study that addresses the above-mentioned gap in the construction phase, which targets to yield a multi-dimensional tool that will allow: 1) integrating critical thinking and decision-making approaches regarding contractor behavior, and 2) adopting innovative sustainable construction methods that reflect reduction in operating costs.

ContributorsElzomor, Mohamed (Author) / Parrish, Kristen (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127882-Thumbnail Image.png
Description

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results.

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results. Consequently, excess energy has to be generated to prevent blackout; causes for energy surge are not easily determined; and potential energy use reduction from energy efficiency solutions is usually not translated into actual energy use reduction. The paper highlights the weaknesses of traditional techniques, and lays out a framework to improve the prediction of energy demand by combining energy use models of equipment, physical systems and buildings, with the proposed data mining algorithms for reverse engineering. The research team first analyses data samples from large complex energy data, and then, presents a set of computationally efficient data mining algorithms for reverse engineering. In order to develop a structural system model for reverse engineering, two focus groups are developed that has direct relation with cause and effect variables. The research findings of this paper includes testing out different sets of reverse engineering algorithms, understand their output patterns and modify algorithms to elevate accuracy of the outputs.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Ye, Long (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-12-09