This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 33
Filtering by

Clear all filters

128168-Thumbnail Image.png
Description

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time series for CO2 contributions from fossil fuel combustion (Cff) for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub-city source regions in the LA megacity domain when wind directions are considered.

ContributorsNewman, Sally (Author) / Xu, Xiaomei (Author) / Gurney, Kevin (Author) / Hsu, Ying Kuang (Author) / Li, King Fai (Author) / Jiang, Xun (Author) / Keeling, Ralph (Author) / Feng, Sha (Author) / O'Keeffe, Darragh (Author) / Patarasuk, Risa (Author) / Wong, Kam Weng (Author) / Rao, Preeti (Author) / Fischer, Marc L. (Author) / Yung, Yuk L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-22
128183-Thumbnail Image.png
Description

Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75–88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying

Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75–88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and “Bison Pool,” using various 13C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10–30 times lower uptake across most fatty acids. 13C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at “Bison Pool” and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at “Bison Pool” and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C-uptake into archaeal lipids occurred predominantly with 13C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained by autotrophic growth.

ContributorsSchubotz, Florence (Author) / Hays, Lindsay E. (Author) / Meyer-Dombard, D'Arcy R. (Author) / Gillespie, Aimee (Author) / Shock, Everett (Author) / Summons, Roger E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-05
128192-Thumbnail Image.png
Description

Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal,

Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global tracer transport model. Results show an annual FFCO2 rectification varying from −1.35 to +0.13 ppm from the combination of all three cycles. This rectification is driven by a large negative diurnal FFCO2 rectification due to the covariation of diurnal FFCO2 emissions and diurnal vertical mixing, as well as a smaller positive seasonal FFCO2 rectification driven by the covariation of monthly FFCO2 emissions and monthly atmospheric transport. The diurnal FFCO2 emissions are responsible for a diurnal FFCO2 concentration amplitude of up to 9.12 ppm at the grid cell scale. Similarly, the monthly FFCO2 emissions are responsible for a simulated seasonal CO2 amplitude of up to 6.11 ppm at the grid cell scale. The impact of the diurnal FFCO2 emissions, when only sampled in the local afternoon, is also important, causing an increase of +1.13 ppmv at the grid cell scale. The simulated CO2 concentration impacts from the diurnally and seasonally varying FFCO2 emissions are centered over large source regions in the Northern Hemisphere, extending to downwind regions. This study demonstrates the influence of sub-annual variations in FFCO2 emissions on simulated CO2 concentration and suggests that inversion studies must take account of these variations in the affected regions.

ContributorsZhang, Xia (Author) / Gurney, Kevin (Author) / Rayner, Peter (Author) / Baker, David (Author) / Liu, Yu-ping (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-19
128348-Thumbnail Image.png
Description

The most common evolutionary events at the molecular level are single-base substitutions, as well as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little

The most common evolutionary events at the molecular level are single-base substitutions, as well as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little has been done to model indel dynamics, probably due to the difficulty in writing explicit likelihood functions. Here, we contribute to the effort of modeling indel dynamics by presenting SpartaABC, an approximate Bayesian computation (ABC) approach to infer indel parameters from sequence data (either aligned or unaligned). SpartaABC circumvents the need to use an explicit likelihood function by extracting summary statistics from simulated sequences. First, summary statistics are extracted from the input sequence data. Second, SpartaABC samples indel parameters from a prior distribution and uses them to simulate sequences. Third, it computes summary statistics from the simulated sets of sequences. By computing a distance between the summary statistics extracted from the input and each simulation, SpartaABC can provide an approximation to the posterior distribution of indel parameters as well as point estimates. We study the performance of our methodology and show that it provides accurate estimates of indel parameters in simulations. We next demonstrate the utility of SpartaABC by studying the impact of alignment errors on the inference of positive selection. A C ++ program implementing SpartaABC is freely available in http://spartaabc.tau.ac.il.

ContributorsLevy Karin, Eli (Author) / Shkedy, Dafna (Author) / Ashkenazy, Haim (Author) / Cartwright, Reed (Author) / Pupko, Tal (Author) / Biodesign Institute (Contributor)
Created2017-05-01
128403-Thumbnail Image.png
Description

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized measure of gene flow. To test this prediction, we model local dispersal of haploid individuals on a two-dimensional landscape using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular, gamma, Lomax and Pareto. When neighborhood size is held constant, the distributions produce similar patterns of isolation-by-distance, confirming predictions. Considering this, we propose that the triangular distribution is the appropriate null distribution for isolation-by-distance studies. Under the triangular distribution, dispersal is uniform over the neighborhood area which suggests that the common description of neighborhood size as a measure of an effective, local panmictic population is valid for popular families of dispersal distributions. We further show how to draw random variables from the triangular distribution efficiently and argue that it should be utilized in other studies in which computational efficiency is important.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-29
128236-Thumbnail Image.png
Description

Megacities are major sources of anthropogenic fossil fuel CO2(FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather

Megacities are major sources of anthropogenic fossil fuel CO2(FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO2 emissions monitoring in the LA megacity requires FFCO2 emissions modelling with  ∼1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.

ContributorsFeng, Sha (Author) / Lauvaux, Thomas (Author) / Newman, Sally (Author) / Rao, Preeti (Author) / Ahmadov, Ravan (Author) / Deng, Aijun (Author) / Diaz-Isaac, Liza I. (Author) / Duren, Riley M. (Author) / Fischer, Marc L. (Author) / Gerbig, Christoph (Author) / Gurney, Kevin (Author) / Huang, Jianhua (Author) / Jeong, Seongeun (Author) / Li, Zhijin (Author) / Miller, Charles E. (Author) / O'Keeffe, Darragh (Author) / Patarasuk, Risa (Author) / Sander, Stanley P. (Author) / Song, Yang (Author) / Wong, Kam W. (Author) / Yung, Yuk L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-22
129628-Thumbnail Image.png
Description

Carbon can be a major constituent of crustal and mantle fluids, occurring both as dissolved ionic species (e.g., carbonate ions or organic acids) and molecular species (e.g., CO2, CO, CH4, and more complex organic compounds). The chemistry of dissolved carbon changes dramatically with pressure (P) and temperature (T). In aqueous

Carbon can be a major constituent of crustal and mantle fluids, occurring both as dissolved ionic species (e.g., carbonate ions or organic acids) and molecular species (e.g., CO2, CO, CH4, and more complex organic compounds). The chemistry of dissolved carbon changes dramatically with pressure (P) and temperature (T). In aqueous fluids at low P and T, molecular carbon gas species such as CO2 and CH4 saturate at low concentration to form a separate phase. With modest increases in P and T, these molecular species become fully miscible with H2O, enabling deep crustal and mantle fluids to become highly concentrated in carbon. At such high concentrations, carbon species play an integral role as solvent components and, with H2O, control the mobility of rock-forming elements in a wide range of geologic settings. The migration of carbon-bearing crustal and mantle fluids contributes to Earth’s carbon cycle; however, the mechanisms, magnitudes, and time variations of carbon transfer from depth to the surface remain least understood parts of the global carbon budget (Berner 1991, 1994; Berner and Kothavala 2001).

ContributorsManning, Craig E. (Author) / Shock, Everett (Author) / Sverjensky, Dimitri A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013
127975-Thumbnail Image.png
Description

We present a high-resolution atmospheric inversion system combining a Lagrangian Particle Dispersion Model (LPDM) and the Weather Research and Forecasting model (WRF), and test the impact of assimilating meteorological observation on transport accuracy. A Four Dimensional Data Assimilation (FDDA) technique continuously assimilates meteorological observations from various observing systems into the

We present a high-resolution atmospheric inversion system combining a Lagrangian Particle Dispersion Model (LPDM) and the Weather Research and Forecasting model (WRF), and test the impact of assimilating meteorological observation on transport accuracy. A Four Dimensional Data Assimilation (FDDA) technique continuously assimilates meteorological observations from various observing systems into the transport modeling system, and is coupled to the high resolution CO2 emission product Hestia to simulate the atmospheric mole fractions of CO2. For the Indianapolis Flux Experiment (INFLUX) project, we evaluated the impact of assimilating different meteorological observation systems on the linearized adjoint solutions and the CO2 inverse fluxes estimated using observed CO2 mole fractions from 11 out of 12 communications towers over Indianapolis for the Sep.-Nov. 2013 period. While assimilating WMO surface measurements improved the simulated wind speed and direction, their impact on the planetary boundary layer (PBL) was limited. Simulated PBL wind statistics improved significantly when assimilating upper-air observations from the commercial airline program Aircraft Communications Addressing and Reporting System (ACARS) and continuous ground-based Doppler lidar wind observations. Wind direction mean absolute error (MAE) decreased from 26 to 14 degrees and the wind speed MAE decreased from 2.0 to 1.2 m s-1, while the bias remains small in all configurations (< 6 degrees and 0.2 m s-1). Wind speed MAE and ME are larger in daytime than in nighttime. PBL depth MAE is reduced by ~10%, with little bias reduction. The inverse results indicate that the spatial distribution of CO2 inverse fluxes were affected by the model performance while the overall flux estimates changed little across WRF simulations when aggregated over the entire domain. Our results show that PBL wind observations are a potent tool for increasing the precision of urban meteorological reanalyses, but that the impact on inverse flux estimates is dependent on the specific urban environment.

ContributorsDeng, Aijun (Author) / Lauvaux, Thomas (Author) / Davis, Kenneth J. (Author) / Gaudet, Brian J. (Author) / Miles, Natasha (Author) / Richardson, Scott J. (Author) / Wu, Kai (Author) / Sarmiento, Daniel P. (Author) / Hardesty, R. Michael (Author) / Bonin, Timothy A. (Author) / Brewer, W. Alan (Author) / Gurney, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-23
127983-Thumbnail Image.png
Description

Mutation is the ultimate source of all genetic variation and is, therefore, central to evolutionary change. Previous work on Paramecium tetraurelia found an unusually low germline base-substitution mutation rate in this ciliate. Here, we tested the generality of this result among ciliates using Tetrahymena thermophila. We sequenced the genomes of

Mutation is the ultimate source of all genetic variation and is, therefore, central to evolutionary change. Previous work on Paramecium tetraurelia found an unusually low germline base-substitution mutation rate in this ciliate. Here, we tested the generality of this result among ciliates using Tetrahymena thermophila. We sequenced the genomes of 10 lines of T. thermophila that had each undergone approximately 1,000 generations of mutation accumulation (MA). We applied an existing mutation-calling pipeline and developed a new probabilistic mutation detection approach that directly models the design of an MA experiment and accommodates the noise introduced by mismapped reads. Our probabilistic mutation-calling method provides a straightforward way of estimating the number of sites at which a mutation could have been called if one was present, providing the denominator for our mutation rate calculations. From these methods, we find that T. thermophila has a germline base-substitution mutation rate of 7.61 × 10 -12 per-site, per cell division, which is consistent with the low base-substitution mutation rate in P. tetraurelia. Over the course of the evolution experiment, genomic exclusion lines derived from the MA lines experienced a fitness decline that cannot be accounted for by germline base-substitution mutations alone, suggesting that other genetic or epigenetic factors must be involved. Because selection can only operate to reduce mutation rates based upon the "visible" mutational load, asexual reproduction with a transcriptionally silent germline may allow ciliates to evolve extremely low germline mutation rates.

ContributorsLong, Hongan (Author) / Winter, David (Author) / Chang, Allan Y.-C. (Author) / Sung, Way (Author) / Wu, Steven (Author) / Balboa, Mariel (Author) / Azevedo, Ricardo B. R. (Author) / Cartwright, Reed (Author) / Lynch, Michael (Author) / Zufall, Rebecca A. (Author) / Biodesign Institute (Contributor)
Created2016-09-15
128022-Thumbnail Image.png
Description

The INFLUX experiment has taken multiple approaches to estimate the carbon dioxide (CO2) flux in a domain centered on the city of Indianapolis, Indiana. One approach, Hestia, uses a bottom-up technique relying on a mixture of activity data, fuel statistics, direct flux measurement and modeling algorithms. A second uses a

The INFLUX experiment has taken multiple approaches to estimate the carbon dioxide (CO2) flux in a domain centered on the city of Indianapolis, Indiana. One approach, Hestia, uses a bottom-up technique relying on a mixture of activity data, fuel statistics, direct flux measurement and modeling algorithms. A second uses a Bayesian atmospheric inverse approach constrained by atmospheric CO2 measurements and the Hestia emissions estimate as a prior CO2 flux. The difference in the central estimate of the two approaches comes to 0.94 MtC (an 18.7% difference) over the eight-month period between September 1, 2012 and April 30, 2013, a statistically significant difference at the 2-sigma level. Here we explore possible explanations for this apparent discrepancy in an attempt to reconcile the flux estimates. We focus on two broad categories: 1) biases in the largest of bottom-up flux contributions and 2) missing CO2 sources. Though there is some evidence for small biases in the Hestia fossil fuel carbon dioxide (FFCO2) flux estimate as an explanation for the calculated difference, we find more support for missing CO2 fluxes, with biological respiration the largest of these. Incorporation of these differences bring the Hestia bottom-up and the INFLUX inversion flux estimates into statistical agreement and are additionally consistent with wintertime measurements of atmospheric 14CO2. We conclude that comparison of bottom-up and top-down approaches must consider all flux contributions and highlight the important contribution to urban carbon budgets of animal and biotic respiration. Incorporation of missing CO2 fluxes reconciles the bottom-up and inverse-based approach in the INFLUX domain.

ContributorsGurney, Kevin (Author) / Liang, Jianming (Author) / Patarasuk, Risa (Author) / O'Keeffe, Darragh (Author) / Huang, Jianhua (Author) / Hutchins, Maya (Author) / Lauvaux, Thomas (Author) / Turnbull, Jocelyn C. (Author) / Shepson, Paul B. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-03