This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 22
Filtering by

Clear all filters

128737-Thumbnail Image.png
Description

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of individuals with metabolic syndrome. We further wanted to examine whether similar relationships that we have found previously in skeletal muscle exist in peripheral whole blood cells. All subjects (n=184) were Latino descent from the Arizona Insulin Resistance registry. Subjects were classified based on the metabolic syndrome phenotype according to the National Cholesterol Education Program’s Adult Treatment Panel III. Of the 184 Latino subjects in the study, 74 were classified with the metabolic syndrome and 110 were without. Whole blood gene expression profiling was performed using the Agilent 4x44K Whole Human Genome Microarray. Whole blood microarray analysis identified 1,432 probes that were altered in expression ≥1.2 fold and P<0.05 after Benjamini-Hochberg in the metabolic syndrome subjects. KEGG pathway analysis revealed significant enrichment for pathways including ribosome, oxidative phosphorylation and MAPK signaling (all Benjamini-Hochberg P<0.05). Whole blood mRNA expression changes observed in the microarray data were confirmed by quantitative RT-PCR. Transcription factor binding motif enrichment analysis revealed E2F1, ELK1, NF-kappaB, STAT1 and STAT3 significantly enriched after Bonferroni correction (all P<0.05). The results of the present study demonstrate that whole blood is a useful tissue for studying the metabolic syndrome and its underlying insulin resistance although the relationship between blood and skeletal muscle differs.

ContributorsTangen, Samantha (Author) / Tsinajinnie, Darwin (Author) / Nunez, Martha (Author) / Shaibi, Gabriel (Author) / Mandarino, Lawrence (Author) / Coletta, Dawn (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-17
128725-Thumbnail Image.png
Description

In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes

In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes were evaluated using VO2 max testing on the treadmill, and strength assessment using a dynamometer to determine peak torque for leg extensions. Dietary data were assessed using detailed seven-day food logs. Although total protein intake was lower among vegetarians in comparison to omnivores, protein intake as a function of body mass did not differ by group (1.2 ± 0.3 and 1.4 ± 0.5 g/kg body mass for VEG and OMN respectively, p = 0.220). VO2 max differed for females by diet group (53.0 ± 6.9 and 47.1 ± 8.6 mL/kg/min for VEG and OMN respectively, p < 0.05) but not for males (62.6 ± 15.4 and 55.7 ± 8.4 mL/kg/min respectively). Peak torque did not differ significantly between diet groups. Results from this study indicate that vegetarian endurance athletes’ cardiorespiratory fitness was greater than that for their omnivorous counterparts, but that peak torque did not differ between diet groups. These data suggest that vegetarian diets do not compromise performance outcomes and may facilitate aerobic capacity in athletes.

ContributorsLynch, Heidi (Author) / Wharton, Christopher (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2016-11-15
128617-Thumbnail Image.png
Description

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.

ContributorsWinter, David (Author) / Pacheco, Maria Andreina (Author) / Vallejo, Andres F. (Author) / Schwartz, Rachel (Author) / Arevalo-Herrera, Myriam (Author) / Herrera, Socrates (Author) / Cartwright, Reed (Author) / Escalante, Ananias (Author) / Biodesign Institute (Contributor)
Created2015-12-28
127891-Thumbnail Image.png
Description

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI).

Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor)
Created2017-11-24
128403-Thumbnail Image.png
Description

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized measure of gene flow. To test this prediction, we model local dispersal of haploid individuals on a two-dimensional landscape using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular, gamma, Lomax and Pareto. When neighborhood size is held constant, the distributions produce similar patterns of isolation-by-distance, confirming predictions. Considering this, we propose that the triangular distribution is the appropriate null distribution for isolation-by-distance studies. Under the triangular distribution, dispersal is uniform over the neighborhood area which suggests that the common description of neighborhood size as a measure of an effective, local panmictic population is valid for popular families of dispersal distributions. We further show how to draw random variables from the triangular distribution efficiently and argue that it should be utilized in other studies in which computational efficiency is important.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-29
129059-Thumbnail Image.png
Description

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9 kg/m2), the preload (isoenergetic peanut or grain bar with water, or water alone) was followed after 60 min with ingestion of a standardized glycemic test meal. Satiety and blood glucose were assessed immediately prior to the preload and to the test meal, and for two hours postmeal at 30-min intervals. In the parallel-arm, randomized trial (n = 44; 40.5 ± 1.6 y, 31.8 ± 0.9 kg/m2), the peanut or grain bar preload was consumed one hour prior to the evening meal for eight weeks. Body mass was measured at 2-week intervals, and secondary endpoints included blood hemoglobin A1c and energy intake as assessed by 3-d diet records collected at pre-trial and trial weeks 1 and 8.

Results: Satiety was elevated in the postprandial period following grain bar ingestion in comparison to peanut or water ingestion (p = 0.001, repeated-measures ANOVA). Blood glucose was elevated one hour after ingestion of the grain bar as compared to the peanut or water treatments; yet, total glycemia did not vary between treatments in the two hour postprandial period. In the 8-week trial, body mass was reduced for the grain bar versus peanut groups after eight weeks (−1.3 ± 0.4 kg versus −0.2 ± 0.3 kg, p = 0.033, analysis of covariance). Energy intake was reduced by 458 kcal/d in the first week of the trial for the grain bar group as compared to the peanut group (p = 0.118). Hemoglobin A1c changed significantly between groups during the trial (−0.25 ± 0.07% and −0.18 ± 0.12% for the grain bar and peanut groups respectively, p = 0.001).

Conclusions: Compared to an isoenergetic peanut preload, consumption of a grain bar preload one hour prior to a standardized meal significantly raised postmeal satiety. Moreover, consumption of the grain bar prior to the evening meal was associated with significant weight loss over time suggesting that glycemic carbohydrate ingestion prior to meals may be a weight management strategy.

ContributorsJohnston, Carol (Author) / Catherine, Trier (Author) / Fleming, Katie (Author) / College of Health Solutions (Contributor)
Created2013-03-27
129044-Thumbnail Image.png
Description

Background: Height is an important health assessment measure with many applications. In the medical practice and in research settings, height is typically measured with a stadiometer. Although lasers are commonly used by health professionals for measurement including facial imaging, corneal thickness, and limb length, it has not been utilized for

Background: Height is an important health assessment measure with many applications. In the medical practice and in research settings, height is typically measured with a stadiometer. Although lasers are commonly used by health professionals for measurement including facial imaging, corneal thickness, and limb length, it has not been utilized for measuring height. The purpose of this feasibility study was to examine the ease and accuracy of a laser device for measuring height in children and adults.

Findings: In immediate succession, participant height was measured in triplicate using a stadiometer followed by the laser device. Measurement error for the laser device was significantly higher than that for the stadiometer (0.35 and 0.20 cm respectively). However, the measurement techniques were highly correlated (r2 = 0.998 and 0.990 for the younger [<12 y, n = 25] and older [≥12 y, n = 100] participants respectively), and the estimated reliability between measurement techniques was 0.999 (ICC; 95 % CI: 0.998,1.000) and 0.995 (ICC; 95 % CI: 0.993,0.997) for the younger and older groups respectively. The average differences between the two styles of measurement (e.g., stadiometer minus laser) were significantly different from zero: +0.93 and +0.45 cm for the younger and older groups respectively.

Conclusions: These data demonstrate that laser technology can be adapted to measure height in children and adults. Although refinement is needed, the laser device for measuring height merits further development.

ContributorsMayol-Kreiser, Sandra (Author) / Garcia-Turner, Vanessa (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2015-08-31
128752-Thumbnail Image.png
Description

Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect

Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10[superscript -9]), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.

ContributorsWinnier, Deidre A. (Author) / Fourcaudot, Marcel (Author) / Norton, Luke (Author) / Abdul-Ghani, Muhammad A. (Author) / Hu, Shirley L. (Author) / Farook, Vidya S. (Author) / Coletta, Dawn (Author) / Kumar, Satish (Author) / Puppala, Sobha (Author) / Chittoor, Geetha (Author) / Dyer, Thomas D. (Author) / Arya, Rector (Author) / Carless, Melanie (Author) / Lehman, Donna M. (Author) / Curran, Joanne E. (Author) / Cromack, Douglas T. (Author) / Tripathy, Devjit (Author) / Blangero, John (Author) / Duggirala, Ravindranath (Author) / Goring, Harald H. H. (Author) / DeFronzo, Ralph A. (Author) / Jenkinson, Christopher P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-01
128470-Thumbnail Image.png
Description

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and the Mahalanobis distance to estimate how well a proposed set of parameters fits input data. Using simulations, we demonstrate that our methodology can accurately infer the indel parameters for a large variety of plausible settings. Moreover, using our methodology, we show that indel parameters substantially vary between three genomic data sets: Mammals, bacteria, and retroviruses. Finally, we demonstrate how our methodology can be used to simulate MSAs based on indel parameters inferred from real data sets.

ContributorsLevy Karin, Eli (Author) / Rabin, Avigayel (Author) / Ashkenazy, Haim (Author) / Shkedy, Dafna (Author) / Avram, Oren (Author) / Cartwright, Reed (Author) / Pupko, Tal (Author) / Biodesign Institute (Contributor)
Created2015-11-03
128447-Thumbnail Image.png
Description

Mathematical models of infectious diseases are a valuable tool in understanding the mechanisms and patterns of disease transmission. It is, however, a difficult subject to teach, requiring both mathematical expertise and extensive subject-matter knowledge of a variety of disease systems. In this article, we explore several uses of zombie epidemics

Mathematical models of infectious diseases are a valuable tool in understanding the mechanisms and patterns of disease transmission. It is, however, a difficult subject to teach, requiring both mathematical expertise and extensive subject-matter knowledge of a variety of disease systems. In this article, we explore several uses of zombie epidemics to make mathematical modeling and infectious disease epidemiology more accessible to public health professionals, students, and the general public. We further introduce a web-based simulation, White Zed (http://cartwrig.ht/apps/whitezed/), that can be deployed in classrooms to allow students to explore models before implementing them. In our experience, zombie epidemics are familiar, approachable, flexible, and an ideal way to introduce basic concepts of infectious disease epidemiology.

ContributorsLofgren, Eric T. (Author) / Collins, Kristy M. (Author) / Smith, Tara C. (Author) / Cartwright, Reed (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03