This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 15 of 15
Filtering by

Clear all filters

128424-Thumbnail Image.png
Description

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In this study, we develop new numerical algorithms to characterize the thermodynamics of urban nocturnal cooling based on solving the energy balance equations for both the landscape surface and the overlying atmosphere. Further, a scaling law is proposed to relate the UHI intensity to a range of governing mechanisms, including the vertical and horizontal transport of heat in the surface layer, the urban-rural breeze, and the possible urban expansion. The accuracy of proposed methods is evaluated against in-situ urban measurements collected in cities with different geographic and climatic conditions. It is found that the vertical and horizontal contributors modulate the nocturnal UHI at distinct elevation in the atmospheric boundary layer.

ContributorsWang, Zhi-Hua (Author) / Li, Qi (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-04
127977-Thumbnail Image.png
Description

Background: To identify social ecological correlates of objectively measured workplace sedentary behavior.

Methods: Participants from 24 worksites - across academic, industrial, and government sectors - wore an activPAL-micro accelerometer for 7-days (Jan-Nov 2016). Work time was segmented using daily logs. Sedentary behavior outcomes included time spent sitting, standing, in light intensity physical activity

Background: To identify social ecological correlates of objectively measured workplace sedentary behavior.

Methods: Participants from 24 worksites - across academic, industrial, and government sectors - wore an activPAL-micro accelerometer for 7-days (Jan-Nov 2016). Work time was segmented using daily logs. Sedentary behavior outcomes included time spent sitting, standing, in light intensity physical activity (LPA, stepping cadence <100 steps/min), and in prolonged sitting bouts (>30 min). Outcomes were standardized to an 8 h work day. Two electronic surveys were completed to derive individual (job type and work engagement), cultural (lunch away from the desk, walking at lunch and face-to-face interaction), physical (personal printer and office type) and organizational (sector) factors. Mixed-model analyses with worksite-level clustering were performed to examine multi-level associations. Secondary analyses examined job type and sector as moderators of these associations. All models were adjusted for age, race/ethnicity and gender.

Results: Participants (N = 478; 72% female; age: 45.0 ± 11.3 years; 77.8% non-Hispanic white) wore the activPAL-micro for 90.2 ± 15.5% of the reported workday. Walking at lunch was positively associated with LPA (5.0 ± 0.5 min/8 h, P < 0.001). Regular face-to-face interaction was negatively associated with prolonged sitting (−11.3 ± 4.8 min/8 h, P < 0.05). Individuals in private offices sat more (20.1 ± 9.1 min/8 h, P < 0.05), stood less (−21.5 ± 8.8 min/8 h, P < 0.05), and engaged in more prolonged sitting (40.9 ± 11.2 min/8 h, P < 0.001) than those in public office space. These associations were further modified by job type and sector.

Conclusions: Work-specific individual, cultural, physical and organizational factors are associated with workplace sedentary behavior. Associations vary by job type and sector and should be considered in the design of workplace interventions to reduce sedentary behavior.

ContributorsMullane, Sarah (Author) / Toledo, Meynard John (Author) / Rydell, Sarah A. (Author) / Feltes, Linda H. (Author) / Vuong, Brenna (Author) / Crespo, Noe C. (Author) / Pereira, Mark A. (Author) / Buman, Matthew (Author) / College of Health Solutions (Contributor)
Created2017-08-31
128081-Thumbnail Image.png
Description

Background: Although current technological advancements have allowed for objective measurements of sedentary behavior via accelerometers, these devices do not provide the contextual information needed to identify targets for behavioral interventions and generate public health guidelines to reduce sedentary behavior. Thus, self-reports still remain an important method of measurement for physical

Background: Although current technological advancements have allowed for objective measurements of sedentary behavior via accelerometers, these devices do not provide the contextual information needed to identify targets for behavioral interventions and generate public health guidelines to reduce sedentary behavior. Thus, self-reports still remain an important method of measurement for physical activity and sedentary behaviors.

Objective: This study evaluated the reliability, validity, and sensitivity to change of a smartphone app in assessing sitting, light-intensity physical activity (LPA), and moderate-vigorous physical activity (MVPA).
Methods: Adults (N=28; 49.0 years old, standard deviation [SD] 8.9; 85% men; 73% Caucasian; body mass index=35.0, SD 8.3 kg/m2) reported their sitting, LPA, and MVPA over an 11-week behavioral intervention. During three separate 7-day periods, participants wore the activPAL3c accelerometer/inclinometer as a criterion measure. Intraclass correlation (ICC; 95% CI) and bias estimates (mean difference [δ] and root of mean square error [RMSE]) were used to compare app-based reported behaviors to measured sitting time (lying/seated position), LPA (standing or stepping at <100 steps/minute), and MVPA (stepping at >100 steps/minute).

Results: Test-retest results suggested moderate agreement with the criterion for sedentary time, LPA, and MVPA (ICC=0.65 [0.43-0.82], 0.67 [0.44-0.83] and 0.69 [0.48-0.84], respectively). The agreement between the two measures was poor (ICC=0.05-0.40). The app underestimated sedentary time (δ=-45.9 [-67.6, -24.2] minutes/day, RMSE=201.6) and overestimated LPA and MVPA (δ=18.8 [-1.30 to 38.9] minutes/day, RMSE=183; and δ=29.3 [25.3 to 33.2] minutes/day, RMSE=71.6, respectively). The app underestimated change in time spent during LPA and MVPA but overestimated change in sedentary time. Both measures showed similar directions in changed scores on sedentary time and LPA.

Conclusions: Despite its inaccuracy, the app may be useful as a self-monitoring tool in the context of a behavioral intervention. Future research may help to clarify reasons for under- or over-reporting of behaviors.

ContributorsToledo, Meynard John (Author) / Hekler, Eric (Author) / Hollingshead, Kevin (Author) / Epstein, Dana (Author) / Buman, Matthew (Author) / College of Health Solutions (Contributor)
Created2017-08
128276-Thumbnail Image.png
Description

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban land–atmosphere interactions. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains. Changes of both urban land use and geometry impose significant impact on the overlying urban boundary layer dynamics through modification on bottom boundary conditions, i.e., by altering surface energy partitioning and surface aerodynamic resistance, respectively. Hydrothermal properties of conventional and green roofs have different impacts on atmospheric dynamics due to different surface energy partitioning mechanisms. Urban geometry (represented by the canyon aspect ratio), however, has a significant nonlinear impact on boundary layer structure and temperature. Besides, managing rooftop roughness provides an alternative option to change the boundary layer thermal state through modification of the vertical turbulent transport. The sensitivity analysis deepens our insight into the fundamental physics of urban land–atmosphere interactions and provides useful guidance for urban planning under challenges of changing climate and continuous global urbanization.

ContributorsSong, Jiyun (Author) / Wang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24
128114-Thumbnail Image.png
Description

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQ[subscript S]. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQ[subscript S] flux well (RMSE values of ∼ 30 W m[superscript −2]). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Oechel, Walter C. (Author) / Grimmond, Sue (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-27