This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 38
Filtering by

Clear all filters

129561-Thumbnail Image.png
Description

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

ContributorsChen, Yu-Zhong (Author) / Huang, Zi-Gang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-18
129524-Thumbnail Image.png
Description

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this law breaks down when both the average flux and fluctuation become large. Here we demonstrate the failure of this law in small systems using real data and model complex networked systems, derive analytically a modified flux-fluctuation law, and validate it through computations of a large number of complex networked systems. Our law is more general in that its predictions agree with numerics and it reduces naturally to the previous law in the limit of large system size, leading to new insights into the flow dynamics in small-size complex systems with significant implications for the statistical and scaling behaviors of small systems, a topic of great recent interest.

ContributorsHuang, Zi-Gang (Author) / Dong, Jia-Qi (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-27
129477-Thumbnail Image.png
Description

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.

ContributorsCheng, Hongyan (Author) / Yao, Nan (Author) / Huang, Zi-Gang (Author) / Park, Junpyo (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-15
129347-Thumbnail Image.png
Description

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups,

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing market.

ContributorsDong, Jia-Qi (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-23
129372-Thumbnail Image.png
Description

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit〈f〉and its fluctuation σ : σ ∼〈f⟩β with β ≈ 1.2. The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

ContributorsZhao, Zhidan (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Liu, Huan (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-11-12
129005-Thumbnail Image.png
Description

Background: Counselor behaviors that mediate the efficacy of motivational interviewing (MI) are not well understood, especially when applied to health behavior promotion. We hypothesized that client change talk mediates the relationship between counselor variables and subsequent client behavior change.

Methods: Purposeful sampling identified individuals from a prospective randomized worksite trial using an MI

Background: Counselor behaviors that mediate the efficacy of motivational interviewing (MI) are not well understood, especially when applied to health behavior promotion. We hypothesized that client change talk mediates the relationship between counselor variables and subsequent client behavior change.

Methods: Purposeful sampling identified individuals from a prospective randomized worksite trial using an MI intervention to promote firefighters’ healthy diet and regular exercise that increased dietary intake of fruits and vegetables (n = 21) or did not increase intake of fruits and vegetables (n = 22). MI interactions were coded using the Motivational Interviewing Skill Code (MISC 2.1) to categorize counselor and firefighter verbal utterances. Both Bayesian and frequentist mediation analyses were used to investigate whether client change talk mediated the relationship between counselor skills and behavior change.

Results: Counselors’ global spirit, empathy, and direction and MI-consistent behavioral counts (e.g., reflections, open questions, affirmations, emphasize control) significantly correlated with firefighters’ total client change talk utterances (rs = 0.42, 0.40, 0.30, and 0.61, respectively), which correlated significantly with their fruit and vegetable intake increase (r = 0.33). Both Bayesian and frequentist mediation analyses demonstrated that findings were consistent with hypotheses, such that total client change talk mediated the relationship between counselor’s skills—MI-consistent behaviors [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .02, .12] and MI spirit [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .01, .13]—and increased fruit and vegetable consumption.

Conclusion: Motivational interviewing is a resource- and time-intensive intervention, and is currently being applied in many arenas. Previous research has identified the importance of counselor behaviors and client change talk in the treatment of substance use disorders. Our results indicate that similar mechanisms may underlie the effects of MI for dietary change. These results inform MI training and application by identifying those processes critical for MI success in health promotion domains.

ContributorsPirlott, Angela (Author) / Kisbu-Sakarya, Yasemin (Author) / DeFrancesco, Carol A. (Author) / Elliot, Diane L. (Author) / MacKinnon, David (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-06-08
128558-Thumbnail Image.png
Description

Resource allocation takes place in various types of real-world complex systems such as urban traffic, social services institutions, economical and ecosystems. Mathematically, the dynamical process of resource allocation can be modeled as minority games. Spontaneous evolution of the resource allocation dynamics, however, often leads to a harmful herding behavior accompanied

Resource allocation takes place in various types of real-world complex systems such as urban traffic, social services institutions, economical and ecosystems. Mathematically, the dynamical process of resource allocation can be modeled as minority games. Spontaneous evolution of the resource allocation dynamics, however, often leads to a harmful herding behavior accompanied by strong fluctuations in which a large majority of agents crowd temporarily for a few resources, leaving many others unused. Developing effective control methods to suppress and eliminate herding is an important but open problem. Here we develop a pinning control method, that the fluctuations of the system consist of intrinsic and systematic components allows us to design a control scheme with separated control variables. A striking finding is the universal existence of an optimal pinning fraction to minimize the variance of the system, regardless of the pinning patterns and the network topology. We carry out a generally applicable theory to explain the emergence of optimal pinning and to predict the dependence of the optimal pinning fraction on the network topology. Our work represents a general framework to deal with the broader problem of controlling collective dynamics in complex systems with potential applications in social, economical and political systems.

ContributorsZhang, Ji-Qiang (Author) / Huang, Zi-Gang (Author) / Wu, Zhi-Xi (Author) / Su, Riqi (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-17
128949-Thumbnail Image.png
Description

Background: The Nike + Fuelband is a commercially available, wrist-worn accelerometer used to track physical activity energy expenditure (PAEE) during exercise. However, validation studies assessing the accuracy of this device for estimating PAEE are lacking. Therefore, this study examined the validity and reliability of the Nike + Fuelband for estimating PAEE during physical activity in

Background: The Nike + Fuelband is a commercially available, wrist-worn accelerometer used to track physical activity energy expenditure (PAEE) during exercise. However, validation studies assessing the accuracy of this device for estimating PAEE are lacking. Therefore, this study examined the validity and reliability of the Nike + Fuelband for estimating PAEE during physical activity in young adults. Secondarily, we compared PAEE estimation of the Nike + Fuelband with the previously validated SenseWear Armband (SWA).

Methods: Twenty-four participants (n = 24) completed two, 60-min semi-structured routines consisting of sedentary/light-intensity, moderate-intensity, and vigorous-intensity physical activity. Participants wore a Nike + Fuelband and SWA, while oxygen uptake was measured continuously with an Oxycon Mobile (OM) metabolic measurement system (criterion).

Results: The Nike + Fuelband (ICC = 0.77) and SWA (ICC = 0.61) both demonstrated moderate to good validity. PAEE estimates provided by the Nike + Fuelband (246 ± 67 kcal) and SWA (238 ± 57 kcal) were not statistically different than OM (243 ± 67 kcal). Both devices also displayed similar mean absolute percent errors for PAEE estimates (Nike + Fuelband = 16 ± 13 %; SWA = 18 ± 18 %). Test-retest reliability for PAEE indicated good stability for Nike + Fuelband (ICC = 0.96) and SWA (ICC = 0.90).

Conclusion: The Nike + Fuelband provided valid and reliable estimates of PAEE, that are similar to the previously validated SWA, during a routine that included approximately equal amounts of sedentary/light-, moderate- and vigorous-intensity physical activity.

ContributorsTucker, Wesley (Author) / Bhammar, Dharini M. (Author) / Sawyer, Brandon J. (Author) / Buman, Matthew (Author) / Gaesser, Glenn (Author) / College of Health Solutions (Contributor)
Created2015-06-30
129067-Thumbnail Image.png
Description

Background: Little research has explored who responds better to an automated vs. human advisor for health behaviors in general, and for physical activity (PA) promotion in particular. The purpose of this study was to explore baseline factors (i.e., demographics, motivation, interpersonal style, and external resources) that moderate intervention efficacy delivered by

Background: Little research has explored who responds better to an automated vs. human advisor for health behaviors in general, and for physical activity (PA) promotion in particular. The purpose of this study was to explore baseline factors (i.e., demographics, motivation, interpersonal style, and external resources) that moderate intervention efficacy delivered by either a human or automated advisor.

Methods: Data were from the CHAT Trial, a 12-month randomized controlled trial to increase PA among underactive older adults (full trial N = 218) via a human advisor or automated interactive voice response advisor. Trial results indicated significant increases in PA in both interventions by 12 months that were maintained at 18-months. Regression was used to explore moderation of the two interventions.

Results: Results indicated amotivation (i.e., lack of intent in PA) moderated 12-month PA (d = 0.55, p < 0.01) and private self-consciousness (i.e., tendency to attune to one’s own inner thoughts and emotions) moderated 18-month PA (d = 0.34, p < 0.05) but a variety of other factors (e.g., demographics) did not (p > 0.12).

Conclusions: Results provide preliminary evidence for generating hypotheses about pathways for supporting later clinical decision-making with regard to the use of either human- vs. computer-delivered interventions for PA promotion.

ContributorsHekler, Eric (Author) / Buman, Matthew (Author) / Otten, Jennifer (Author) / Castro, Cynthia (Author) / Grieco, Lauren (Author) / Marcus, Bess (Author) / Friedman, Robert H. (Author) / Napolitano, Melissa A. (Author) / King, Abby C. (Author) / College of Health Solutions (Contributor)
Created2013-09-22
Description

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack “fingerprints” and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches.

ContributorsChen, Yu-Zhong (Author) / Huang, Zi-Gang (Author) / Xu, Shouhuai (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-20