This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 27
Filtering by

Clear all filters

128360-Thumbnail Image.png
Description

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course design challenge, as the dual nature of these courses requires course designers to consider two distinct, but complementary, sets of goals for the CURE: 1) scientific discovery milestones (i.e., research goals) and 2) student learning in cognitive, psychomotor, and affective domains (i.e., pedagogical goals). As more undergraduate laboratory courses are re-imagined as CUREs, how do we thoughtfully design these courses to effectively meet both sets of goals? In this Perspectives article, we explore this question and outline recommendations for using backward design in CURE development.

ContributorsCooper, Katelyn (Author) / Soneral, Paula A. G. (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-26
Description

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy.

ContributorsYip, Shun H. (Author) / Wang, Panwen (Author) / Kocher, Jean-Pierre A. (Author) / Sham, Pak Chung (Author) / Wang, Junwen (Author) / College of Health Solutions (Contributor)
Created2017-09-18
Description

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy.

Methods:
A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual’s energy expenditure. On Day 7, ketone buildup from FK was measured.

Results:
A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p < 0.0058. Using a Fisher LDS pair-wise comparison, higher significant levels of acetone buildup were found for diets with 79% fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R[superscript 2] = 0.92), and lower body mass index (R[superscript 2] = 0.71) was observed during FK.

ContributorsPrabhakar, Amlendu (Author) / Quach, Ashley (Author) / Zhang, Haojiong (Author) / Terrera, Mirna (Author) / Jackemeyer, David (Author) / Xian, Xiaojun (Author) / Tsow, Tsing (Author) / Tao, Nongjian (Author) / Forzani, Erica (Author) / Biodesign Institute (Contributor)
Created2015-04-22
128250-Thumbnail Image.png
Description

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here we demonstrate a quantitative binding kinetics analysis of drug-target interactions to investigate the molecular scale origin of drug resistance. Using a surface plasmon resonance imaging, we measured the in situ Herceptin-Her2 binding kinetics in single intact cancer cells for the first time, and observed significantly weakened Herceptin-Her2 interactions in Herceptin-resistant cells, compared to those in Herceptin-sensitive cells. We further showed that the steric hindrance of Mucin-4, a membrane protein, was responsible for the altered drug-receptor binding. This effect of a third molecule on drug-receptor interactions cannot be studied using traditional purified protein methods, demonstrating the importance of the present intact cell-based binding kinetics analysis.

ContributorsWang, Wei (Author) / Yin, Linliang (Author) / Gonzalez-Malerva, Laura (Author) / Wang, Shaopeng (Author) / Yu, Xiaobo (Author) / Eaton, Seron (Author) / Zhang, Shengtao (Author) / Chen, Hong-Yuan (Author) / LaBaer, Joshua (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2014-10-14
128573-Thumbnail Image.png
Description

Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6Clow and Ly6Chi) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E2 is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene

Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6Clow and Ly6Chi) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E2 is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene ablation of the Ep3 receptor in mice suppresses accumulation of Ly6Clow Mos/Mps in infarcted hearts. Ep3 deletion in Mos/Mps markedly attenuates healing after MI by reducing neovascularization in peri-infarct zones. Ep3 deficiency diminishes CX3C chemokine receptor 1 (CX3CR1) expression and vascular endothelial growth factor (VEGF) secretion in Mos/Mps by suppressing TGFβ1 signaling and subsequently inhibits Ly6Clow Mos/Mps migration and angiogenesis. Targeted overexpression of Ep3 receptors in Mos/Mps improves wound healing by enhancing angiogenesis. Thus, the PGE2/Ep3 axis promotes cardiac healing after MI by activating reparative Ly6Clow Mos/Mps, indicating that Ep3 receptor activation may be a promising therapeutic target for acute MI.

ContributorsTang, Juan (Author) / Shen, Yujun (Author) / Chen, Guilin (Author) / Wan, Qiangyou (Author) / Wang, Kai (Author) / Zhang, Jian (Author) / Qin, Jing (Author) / Liu, Guizhu (Author) / Zuo, Shengkai (Author) / Tao, Bo (Author) / Yu, Yu (Author) / Wang, Junwen (Author) / Lazarus, Michael (Author) / Yu, Ying (Author) / College of Health Solutions (Contributor)
Created2017-03-03
127886-Thumbnail Image.png
Description

Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF

Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF logics in regulating target genes. By combining cis-regulatory logics and transcriptional kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene expression data and TF-DNA-binding signals in order to identify the TF logics and to reconstruct the underlying TRNs. We evaluated the newly developed methodology using simulation, comparison and application studies, and the results not only show their consistence with existing knowledge, but also demonstrate its ability to accurately reconstruct TRNs in biological complex systems.

ContributorsYan, Bin (Author) / Guan, Daogang (Author) / Wang, Chao (Author) / Wang, Junwen (Author) / He, Bing (Author) / Qin, Jing (Author) / Boheler, Kenneth R. (Author) / Lu, Aiping (Author) / Zhang, Ge (Author) / Zhu, Hailong (Author) / College of Health Solutions (Contributor)
Created2017-10-19
128826-Thumbnail Image.png
Description

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other’s mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

ContributorsGrunspan, Daniel Z. (Author) / Eddy, Sarah L. (Author) / Brownell, Sara (Author) / Wiggins, Benjamin L. (Author) / Crowe, Alison J. (Author) / Goodreau, Steven M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-10
128798-Thumbnail Image.png
Description

Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai

Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction.

ContributorsLiu, Chenbin (Author) / Tsow, Francis (Author) / Zou, Yi (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2016-02-01
129239-Thumbnail Image.png
Description

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members (National Science Foundation [NSF], 2013). Equity in the scientific research community is important for a variety of reasons; a diverse community of researchers can minimize the negative influence of bias in scientific reasoning, because people from different backgrounds approach a problem from different perspectives and can raise awareness regarding biases (Intemann, 2009). Additionally, by failing to be attentive to equity, we may exclude some of the best and brightest scientific minds and limit the pool of possible scientists (Intemann, 2009). Given this need for equity, how can our scientific research community become more inclusive?

ContributorsBangera, Gita (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
128638-Thumbnail Image.png
Description

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present cepip, a joint likelihood framework, for estimating a variant’s regulatory probability in a context-dependent manner. Our method exhibits significant GWAS signal enrichment and is superior to existing cell type-specific methods. Furthermore, using phenotypically relevant epigenomes to weight the GWAS single-nucleotide polymorphisms, we improve the statistical power of the gene-based association test.

ContributorsLi, Mulin Jun (Author) / Li, Miaoxin (Author) / Liu, Zipeng (Author) / Yan, Bin (Author) / Pan, Zhicheng (Author) / Huang, Dandan (Author) / Liang, Qian (Author) / Ying, Dingge (Author) / Xu, Feng (Author) / Yao, Hongcheng (Author) / Wang, Panwen (Author) / Kocher, Jean-Pierre A. (Author) / Xia, Zhengyuan (Author) / Sham, Pak Chung (Author) / Liu, Jun S. (Author) / Wang, Junwen (Author) / College of Health Solutions (Contributor)
Created2017-03-16