This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 38
Filtering by

Clear all filters

128360-Thumbnail Image.png
Description

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course design challenge, as the dual nature of these courses requires course designers to consider two distinct, but complementary, sets of goals for the CURE: 1) scientific discovery milestones (i.e., research goals) and 2) student learning in cognitive, psychomotor, and affective domains (i.e., pedagogical goals). As more undergraduate laboratory courses are re-imagined as CUREs, how do we thoughtfully design these courses to effectively meet both sets of goals? In this Perspectives article, we explore this question and outline recommendations for using backward design in CURE development.

ContributorsCooper, Katelyn (Author) / Soneral, Paula A. G. (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-26
Description

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to the reaction center, where charge separation takes place. The average number of DNA three-arm junctions per reaction center was tuned from 0.75 to 2.35. This DNA-templated multichromophore system serves as a modular light-harvesting antenna that is capable of being optimized for its spectral properties, energy transfer efficiency, and photostability, allowing one to adjust both the size and spectrum of the resulting structures. This may serve as a useful test bed for developing nanostructured photonic systems.

ContributorsDutta, Palash (Author) / Levenberg, Symon (Author) / Loskutov, Andrey (Author) / Jun, Daniel (Author) / Saer, Rafael (Author) / Beatty, J. Thomas (Author) / Lin, Su (Author) / Liu, Yan (Author) / Woodbury, Neal (Author) / Yan, Hao (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-11-26
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
Description

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above low-frequency background city noise. However, the ability to make such song modifications may be constrained by several morphological factors, including bill gape, size, and shape, thereby limiting the degree to which certain species can vocally adapt to urban settings. We examined the relationship between song characteristics and bill morphology in a species (the house finch, Haemorhous mexicanus) where both vocal performance and bill size are known to differ between city and rural animals.

Results: We found that bills were longer and narrower in more disturbed, urban areas. We observed an increase in minimum song frequency of urban birds, and we also found that the upper frequency limit of songs decreased in direct relation to bill morphology.

Conclusions: These findings are consistent with the hypothesis that birds with longer beaks and therefore longer vocal tracts sing songs with lower maximum frequencies because longer tubes have lower-frequency resonances. Thus, for the first time, we reveal dual constraints (one biotic, one abiotic) on the song frequency range of urban animals. Urban foraging pressures may additionally interact with the acoustic environment to shape bill traits and vocal performance.

ContributorsGiraudeau, Mathieu (Author) / Nolan, Paul M. (Author) / Black, Caitlin E. (Author) / Earl, Stevan (Author) / Hasegawa, Masaru (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-12
Description

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy.

Methods:
A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual’s energy expenditure. On Day 7, ketone buildup from FK was measured.

Results:
A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p < 0.0058. Using a Fisher LDS pair-wise comparison, higher significant levels of acetone buildup were found for diets with 79% fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R[superscript 2] = 0.92), and lower body mass index (R[superscript 2] = 0.71) was observed during FK.

ContributorsPrabhakar, Amlendu (Author) / Quach, Ashley (Author) / Zhang, Haojiong (Author) / Terrera, Mirna (Author) / Jackemeyer, David (Author) / Xian, Xiaojun (Author) / Tsow, Tsing (Author) / Tao, Nongjian (Author) / Forzani, Erica (Author) / Biodesign Institute (Contributor)
Created2015-04-22
128250-Thumbnail Image.png
Description

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here we demonstrate a quantitative binding kinetics analysis of drug-target interactions to investigate the molecular scale origin of drug resistance. Using a surface plasmon resonance imaging, we measured the in situ Herceptin-Her2 binding kinetics in single intact cancer cells for the first time, and observed significantly weakened Herceptin-Her2 interactions in Herceptin-resistant cells, compared to those in Herceptin-sensitive cells. We further showed that the steric hindrance of Mucin-4, a membrane protein, was responsible for the altered drug-receptor binding. This effect of a third molecule on drug-receptor interactions cannot be studied using traditional purified protein methods, demonstrating the importance of the present intact cell-based binding kinetics analysis.

ContributorsWang, Wei (Author) / Yin, Linliang (Author) / Gonzalez-Malerva, Laura (Author) / Wang, Shaopeng (Author) / Yu, Xiaobo (Author) / Eaton, Seron (Author) / Zhang, Shengtao (Author) / Chen, Hong-Yuan (Author) / LaBaer, Joshua (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2014-10-14
127848-Thumbnail Image.png
Description

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in library-based applications. Here we describe a simple approach for sequence analysis directly on solid surfaces that is both high speed and high throughput, utilizing equipment available in most protein analysis facilities. In this approach, surface bound peptides, selectively labeled at their N-termini with a positive charge-bearing group, are subjected to controlled degradation in ammonia gas, resulting in a set of fragments differing by a single amino acid that remain spatially confined on the surface they were bound to. These fragments can then be analyzed by MALDI mass spectrometry, and the peptide sequences read directly from the resulting spectra.

ContributorsZhao, Zhan-Gong (Author) / Cordovez, Lalaine Anne (Author) / Johnston, Stephen (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2017-12-19
128826-Thumbnail Image.png
Description

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other’s mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

ContributorsGrunspan, Daniel Z. (Author) / Eddy, Sarah L. (Author) / Brownell, Sara (Author) / Wiggins, Benjamin L. (Author) / Crowe, Alison J. (Author) / Goodreau, Steven M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-10
128799-Thumbnail Image.png
Description

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals or if these infections increase physiological stress in urban populations.

Methodology/Principal Findings: Here, we measured the prevalence and severity of infection with intestinal coccidians (Isospora sp.) and the canarypox virus (Avipoxvirus) along an urban-to-rural gradient in wild male house finches (Haemorhous mexicanus). In addition, we quantified an important stress indicator in animals (oxidative stress) and several axes of urbanization, including human population density and land-use patterns within a 1 km radius of each trapping site. Prevalence of poxvirus infection and severity of coccidial infection were significantly associated with the degree of urbanization, with an increase of infection in more urban areas. The degrees of infection by the two parasites were not correlated along the urban-rural gradient. Finally, levels of oxidative damage in plasma were not associated with infection or with urbanization metrics.

Conclusion/Significance: These results indicate that the physical presence of humans in cities and the associated altered urban landscape characteristics are associated with increased infections with both a virus and a gastrointestinal parasite in this common songbird resident of North American cities. Though we failed to find elevations in urban- or parasite/pathogen-mediated oxidative stress, humans may facilitate infections in these birds via bird feeders (i.e. horizontal disease transmission due to unsanitary surfaces and/or elevations in host population densities) and/or via elevations in other forms of physiological stress (e.g. corticosterone, nutritional).

ContributorsGiraudeau, Mathieu (Author) / Mousel, Melanie (Author) / Earl, Stevan (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-02-04
128798-Thumbnail Image.png
Description

Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai

Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction.

ContributorsLiu, Chenbin (Author) / Tsow, Francis (Author) / Zou, Yi (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2016-02-01