This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

128360-Thumbnail Image.png
Description

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course design challenge, as the dual nature of these courses requires course designers to consider two distinct, but complementary, sets of goals for the CURE: 1) scientific discovery milestones (i.e., research goals) and 2) student learning in cognitive, psychomotor, and affective domains (i.e., pedagogical goals). As more undergraduate laboratory courses are re-imagined as CUREs, how do we thoughtfully design these courses to effectively meet both sets of goals? In this Perspectives article, we explore this question and outline recommendations for using backward design in CURE development.

ContributorsCooper, Katelyn (Author) / Soneral, Paula A. G. (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-26
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
127882-Thumbnail Image.png
Description

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results.

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results. Consequently, excess energy has to be generated to prevent blackout; causes for energy surge are not easily determined; and potential energy use reduction from energy efficiency solutions is usually not translated into actual energy use reduction. The paper highlights the weaknesses of traditional techniques, and lays out a framework to improve the prediction of energy demand by combining energy use models of equipment, physical systems and buildings, with the proposed data mining algorithms for reverse engineering. The research team first analyses data samples from large complex energy data, and then, presents a set of computationally efficient data mining algorithms for reverse engineering. In order to develop a structural system model for reverse engineering, two focus groups are developed that has direct relation with cause and effect variables. The research findings of this paper includes testing out different sets of reverse engineering algorithms, understand their output patterns and modify algorithms to elevate accuracy of the outputs.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Ye, Long (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-12-09
127878-Thumbnail Image.png
Description

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach and a web-based retrofit toolkit tested on a case study in Arizona, this methodology was able to save about 50% of the total energy consumed by the case study building, depending on the adopted measures and invested capital. While the case study presented is a deep energy retrofit, the proposed framework is effective in guiding the decision-making process that precedes any energy retrofit, deep or light.

ContributorsRios, Fernanda (Author) / Parrish, Kristen (Author) / Chong, Oswald (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127865-Thumbnail Image.png
Description

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external and internal factors. Modern large scale sensor measures some physical signals to monitor real-time system behaviors. Such data has the potentials to detect anomalies, identify consumption patterns, and analyze peak loads. The paper proposes a novel method to detect hidden anomalies in commercial building energy consumption system. The framework is based on Hilbert-Huang transform and instantaneous frequency analysis. The objectives are to develop an automated data pre-processing system that can detect anomalies and provide solutions with real-time consumption database using Ensemble Empirical Mode Decomposition (EEMD) method. The finding of this paper will also include the comparisons of Empirical mode decomposition and Ensemble empirical mode decomposition of three important type of institutional buildings.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Huang, Zigang (Author) / Cheng, Ying (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127833-Thumbnail Image.png
Description

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data continues to grow, new data analysis methods are needed to address the increasing complexity. Using data from the energy loss

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data continues to grow, new data analysis methods are needed to address the increasing complexity. Using data from the energy loss between the supply (energy production sources) and demand (buildings and cities consumption), this paper proposes a Semi-Supervised Energy Model (SSEM) to analyse different loss factors for a building cluster. This is done by deep machine learning by training machines to semi-supervise the learning, understanding and manage the process of energy losses. Semi-Supervised Energy Model (SSEM) aims at understanding the demand-supply characteristics of a building cluster and utilizes the confident unlabelled data (loss factors) using deep machine learning techniques. The research findings involves sample data from one of the university campuses and presents the output, which provides an estimate of losses that can be reduced. The paper also provides a list of loss factors that contributes to the total losses and suggests a threshold value for each loss factor, which is determined through real time experiments. The conclusion of this paper provides a proposed energy model that can provide accurate numbers on energy demand, which in turn helps the suppliers to adopt such a model to optimize their supply strategies.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Chen, Xue-wen (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14
128442-Thumbnail Image.png
Description

Integrating research experiences into undergraduate life sciences curricula in the form of course-based undergraduate research experiences (CUREs) can meet national calls for education reform by giving students the chance to “do science.” In this article, we provide a step-by-step practical guide to help instructors assess their CUREs using best practices

Integrating research experiences into undergraduate life sciences curricula in the form of course-based undergraduate research experiences (CUREs) can meet national calls for education reform by giving students the chance to “do science.” In this article, we provide a step-by-step practical guide to help instructors assess their CUREs using best practices in assessment. We recommend that instructors first identify their anticipated CURE learning outcomes, then work to identify an assessment instrument that aligns to those learning outcomes and critically evaluate the results from their course assessment. To aid instructors in becoming aware of what instruments have been developed, we have also synthesized a table of “off-the-shelf” assessment instruments that instructors could use to assess their own CUREs. However, we acknowledge that each CURE is unique and instructors may expect specific learning outcomes that cannot be assessed using existing assessment instruments, so we recommend that instructors consider developing their own assessments that are tightly aligned to the context of their CURE.

ContributorsShortlidge, Erin (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-12
128826-Thumbnail Image.png
Description

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other’s mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

ContributorsGrunspan, Daniel Z. (Author) / Eddy, Sarah L. (Author) / Brownell, Sara (Author) / Wiggins, Benjamin L. (Author) / Crowe, Alison J. (Author) / Goodreau, Steven M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-10
129239-Thumbnail Image.png
Description

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members (National Science Foundation [NSF], 2013). Equity in the scientific research community is important for a variety of reasons; a diverse community of researchers can minimize the negative influence of bias in scientific reasoning, because people from different backgrounds approach a problem from different perspectives and can raise awareness regarding biases (Intemann, 2009). Additionally, by failing to be attentive to equity, we may exclude some of the best and brightest scientific minds and limit the pool of possible scientists (Intemann, 2009). Given this need for equity, how can our scientific research community become more inclusive?

ContributorsBangera, Gita (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129508-Thumbnail Image.png
Description

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision and Change BioCore Guide—a set of general principles and specific statements that expand upon the core concepts, creating a framework that biology departments can use to align with the goals of Vision and Change. We used a grassroots approach to generate the BioCore Guide, beginning with faculty ideas as the basis for an iterative process that incorporated feedback from more than 240 biologists and biology educators at a diverse range of academic institutions throughout the United States. The final validation step in this process demonstrated strong national consensus, with more than 90% of respondents agreeing with the importance and scientific accuracy of the statements. It is our hope that the BioCore Guide will serve as an agent of change for biology departments as we move toward transforming undergraduate biology education.

ContributorsBrownell, Sara (Author) / Freeman, Scott (Author) / Wenderoth, Mary Pat (Author) / Crowe, Alison J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-01