This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 41 - 50 of 77
Filtering by

Clear all filters

128237-Thumbnail Image.png
Description

There is an increasing demand in higher education institutions for training in complex environmental problems. Such training requires a careful mix of conventional methods and innovative solutions, a task not always easy to accomplish. In this paper we review literature on this theme, highlight relevant advances in the pedagogical literature,

There is an increasing demand in higher education institutions for training in complex environmental problems. Such training requires a careful mix of conventional methods and innovative solutions, a task not always easy to accomplish. In this paper we review literature on this theme, highlight relevant advances in the pedagogical literature, and report on some examples resulting from our recent efforts to teach complex environmental issues. The examples range from full credit courses in sustainable development and research methods to project-based and in-class activity units. A consensus from the literature is that lectures are not sufficient to fully engage students in these issues. A conclusion from the review of examples is that problem-based and project-based, e.g., through case studies, experiential learning opportunities, or real-world applications, learning offers much promise. This could greatly be facilitated by online hubs through which teachers, students, and other members of the practitioner and academic community share experiences in teaching and research, the way that we have done here.

ContributorsBan, Natalie C. (Author) / Boyd, Emily (Author) / Cox, Michael (Author) / Meek, Chanda L. (Author) / Schoon, Michael (Author) / Villamayor-Tomas, Sergio (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015
129634-Thumbnail Image.png
Description

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species.

Conclusion: This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.

ContributorsWei, Li (Author) / Xin, Yi (Author) / Wang, Dongmei (Author) / Jing, Xiaoyan (Author) / Zhou, Qian (Author) / Su, Xiaoquan (Author) / Jia, Jing (Author) / Ning, Kang (Author) / Chen, Feng (Author) / Hu, Qiang (Author) / Xu, Jian (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-05
129668-Thumbnail Image.png
Description

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the micro algal astaxanthin industry.

ContributorsHan, Danxiang (Author) / Li, Yantao (Author) / Hu, Qiang (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-30
129669-Thumbnail Image.png
Description

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g L-1 DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g L-1 DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g L-1 and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g L-1), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg L-1 d(-1) was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.

ContributorsWang, Junfeng (Author) / Sommerfeld, Milton (Author) / Lu, Congming (Author) / Hu, Qiang (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-30
Description

This paper considers the changes in education and capacity building that are needed in response to environmental and social challenges of the 21st Century. We argue that such changes will require more than adjustments in current educational systems, research funding strategies, and interdisciplinary collaborations. Instead, it calls for a deeper

This paper considers the changes in education and capacity building that are needed in response to environmental and social challenges of the 21st Century. We argue that such changes will require more than adjustments in current educational systems, research funding strategies, and interdisciplinary collaborations. Instead, it calls for a deeper questioning of the assumptions and beliefs that frame both problems and solutions. We first discuss the challenges of transforming education and capacity building within five key arenas: interdisciplinary research; university education systems; primary and secondary education systems; researchers from the developing world; and the public at large and politicians. Our starting point is that any type of revolution that is proposed in response to global change is likely to reflect the educational perspectives and paradigms of those calling for the revolution. We differentiate between a circular revolution (as in the "plan-do-check-act cycle" often used in change management) versus an axial revolution (moving to a different way of thinking about the issues), arguing that the latter is a more appropriate response to the complex transdisciplinary challenges posed by global environmental change. We present some potential tools to promote an axial revolution, and consider the limits to this approach. We conclude that rather than promoting one large and ideologically homogenous revolution in education and capacity building, there is a need for a revolution in the way that leaders working with education and capacity building look at systems and processes of change. From this perspective, transformative learning may not only be desirable, but critical in responding to the challenges posed by global environmental change.

ContributorsO'Brien, Karen (Author) / Reams, Jonathan (Author) / Caspari, Anne (Author) / Dugmore, Andrew (Author) / Faghihimani, Maryam (Author) / Fazey, Ioan (Author) / Hackmann, Heide (Author) / Manuel-Navarrete, David (Author) / Marks, John (Author) / Miller, Riel (Author) / Raivio, Kari (Author) / Romero-Lankao, Patricia (Author) / Virji, Hassan (Author) / Vogel, Coleen (Author) / Winiwarter, Verena (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-12
127931-Thumbnail Image.png
Description

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste management methods. Although some authors and organizations have published rich guides addressing the DfD's principles, there are only a few buildings already developed in this area. This study aims to find the challenges in the current practice of deconstruction activities and the gaps between its theory and implementation. Furthermore, it aims to provide insights about how DfD can create opportunities to turn these concepts into strategies that can be largely adopted by the construction industry stakeholders in the near future.

ContributorsRios, Fernanda (Author) / Chong, Oswald (Author) / Grau, David (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-09-14
127946-Thumbnail Image.png
Description

Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs), a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the

Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs), a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS), could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i) defined, xeno-free conditions for their expansion and neuronal differentiation and (ii) scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP)-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol) (P4VP), that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery.

ContributorsTsai, Yihuan (Author) / Cutts, Joshua (Author) / Kimura, Azuma (Author) / Varun, Divya (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-13
127958-Thumbnail Image.png
Description

An assessment framework was developed to evaluate and characterize material recovery facilities within the U.S. that process e-waste. The framework consists of five key categories including, facility overview, operating model and process flows, product flows, collection methods, and facility resource use. The results were used to conduct a material flow

An assessment framework was developed to evaluate and characterize material recovery facilities within the U.S. that process e-waste. The framework consists of five key categories including, facility overview, operating model and process flows, product flows, collection methods, and facility resource use. The results were used to conduct a material flow analysis to develop a representative set of end-of-life pathways (e.g., reuse, refurbish, recycle) to better understand the flow of e-waste in the end-of-life management industry. The majority of products collected was from business sector collection routes. The largest number of products (by units) collected at 90% of facilities was mobile phones. It was also seen that most products went directly to recycling for material recovery and were not in the condition to be re-used or refurbished.

Created2015-05-21
128039-Thumbnail Image.png
Description

The ways in which we travel—by what mode, for how long, and for what purpose—can affect our sense of happiness and well-being. This paper assesses the relationships between measures of the sustainability of transportation systems in U.S. metropolitan areas and subjective well-being. Associations between self-reported happiness levels from the Gallu

The ways in which we travel—by what mode, for how long, and for what purpose—can affect our sense of happiness and well-being. This paper assesses the relationships between measures of the sustainability of transportation systems in U.S. metropolitan areas and subjective well-being. Associations between self-reported happiness levels from the Gallup Healthways Well-being Index and commute data were examined for 187 core-based statistical areas (CBSA). We also supplement this quantitative analysis through brief case studies of high- and low-performing happiness cities. Our quantitative results indicate that regions with higher commute mode shares by non-automobile modes generally had higher well-being scores, even when controlling for important economic predictors of happiness. We also find that pro-sustainable transportation policies can have implications for population-wide happiness and well-being. Our case studies indicate that both high and low scoring happiness cities demonstrate a dedicated commitment to improving sustainable transportation infrastructure. Our study suggests that cities that provide incentives for residents to use more sustainable commute modes may offer greater opportunity for happiness than those that do not.

ContributorsCloutier, Scott (Author) / Karner, Alex (Author) / Breetz, Hanna (Author) / Toufani, Parinaz (Author) / Onat, Nuri (Author) / Patel, Sambhram (Author) / Paralkar, Siddhanth (Author) / Berejnoi Bejarano, Erica (Author) / Morrison, Beth Ann (Author) / Papenfuss, Jason (Author) / Briggs, A. Davieau (Author) / Carlson, Cynthia (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2017-07-13
127902-Thumbnail Image.png
Description

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood mononuclear cells (PBMCs) of a clinically diagnosed AD patient [ASUi003-A] and a non-demented control (NDC) patient [ASUi004-A] homozygous for the APOE4 risk allele. These hiPSCs maintained their original genotype, expressed pluripotency markers, exhibited a normal karyotype, and retained the ability to differentiate into cells representative of the three germ layers.

ContributorsBrookhouser, Nicholas (Author) / Zhang, Ping (Author) / Caselli, Richard (Author) / Kim, Jean J. (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-10