This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 24
Filtering by

Clear all filters

Description

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy.

ContributorsYip, Shun H. (Author) / Wang, Panwen (Author) / Kocher, Jean-Pierre A. (Author) / Sham, Pak Chung (Author) / Wang, Junwen (Author) / College of Health Solutions (Contributor)
Created2017-09-18
Description

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions of the CNS. In this study, we determined that endogenous WNT signaling is a primary contributor to the heterogeneity observed in NPC cultures and neuronal differentiation. Furthermore, exogenous manipulation of WNT signaling during neural differentiation, through either activation or inhibition, reduces this heterogeneity in NPC cultures, thereby promoting the formation of regionally homogeneous NPC and neuronal cultures. The ability to manipulate WNT signaling to generate regionally specific NPCs and neurons will be useful for studying human neural development and will greatly enhance the translational potential of hPSCs for neural-related therapies.

ContributorsMoya, Noel (Author) / Cutts, Joshua (Author) / Gaasterland, Terry (Author) / Willert, Karl (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-09
128616-Thumbnail Image.png
Description

Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants

Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants (17 men, 3 women, aged 35–65) continuously for 64.4±26.2 (range: 13.9 to 102.0) consecutive days. Cardiometabolic risk biomarkers and health-related quality of life metrics were assessed at baseline. Periodograms were constructed to determine patterns emergent from the accelerometer data. Periodicity strength was calculated using circular autocorrelations for time-lagged windows. The most notable periodicity was at 24 h, indicating a circadian rest-activity cycle; however, its strength varied significantly across participants. Periodicity strength was most consistently associated with LDL-cholesterol (r’s = 0.40–0.79, P’s < 0.05) and triglycerides (r’s = 0.68–0.86, P’s < 0.05) but also associated with hs-CRP and health-related quality of life, even after adjusting for demographics and self-rated physical activity and insomnia symptoms. Our framework demonstrates a new method for characterizing behavior patterns longitudinally which captures relationships between 24 h accelerometry data and health outcomes.

ContributorsBuman, Matthew (Author) / Hu, Feiyan (Author) / Newman, Eamonn (Author) / Smeaton, Alan F. (Author) / Epstein, Dana R. (Author) / College of Health Solutions (Contributor)
Created2016-01-04
128596-Thumbnail Image.png
Description

Background: Falls are a major public health concern in older adults. Recent fall prevention guidelines recommend the use of multifactorial fall prevention programs (FPPs) that include exercise for community-dwelling older adults; however, the availability of sustainable, community-based FPPs is limited.

Methods: We conducted a 24-week quasi-experimental study to evaluate the efficacy

Background: Falls are a major public health concern in older adults. Recent fall prevention guidelines recommend the use of multifactorial fall prevention programs (FPPs) that include exercise for community-dwelling older adults; however, the availability of sustainable, community-based FPPs is limited.

Methods: We conducted a 24-week quasi-experimental study to evaluate the efficacy of a community-based, multifactorial FPP [Stay in Balance (SIB)] on dynamic and functional balance and muscular strength. The SIB program was delivered by allied health students and included a health education program focused on fall risk factors and a progressive exercise program emphasizing lower-extremity strength and balance. All participants initially received the 12-week SIB program, and participants were non-randomly assigned at baseline to either continue the SIB exercise program at home or as a center-based program for an additional 12 weeks. Adults aged 60 and older (n = 69) who were at-risk of falling (fall history or 2+ fall risk factors) were recruited to participate. Mixed effects repeated measures using Statistical Application Software Proc Mixed were used to examine group, time, and group-by-time effects on dynamic balance (8-Foot Up and Go), functional balance (Berg Balance Scale), and muscular strength (30 s chair stands and 30 s arm curls). Non-normally distributed outcome variables were log-transformed.

Results: After adjusting for age, gender, and body mass index, 8-Foot Up and Go scores, improved significantly over time [F(2,173) = 8.92, p = 0.0; T0 − T2 diff = 1.2 (1.0)]. Berg Balance Scores [F(2,173) = 29.0, p < 0.0001; T0 − T2 diff = 4.96 (0.72)], chair stands [F(2,171) = 10.17, p < 0.0001; T0 − T2 diff = 3.1 (0.7)], and arm curls [F(2,171) = 12.7, p < 0.02; T0 − T2 diff = 2.7 (0.6)] also all improved significantly over time. There were no significant group-by-time effects observed for any of the outcomes.

Conclusion: The SIB program improved dynamic and functional balance and muscular strength in older adults at-risk for falling. Our findings indicate continuing home-based strength and balance exercises at home after completion of a center-based FPP program may be an effective and feasible way to maintain improvements in balance and strength parameters.

ContributorsDer Ananian, Cheryl (Author) / Mitros, Melanie (Author) / Buman, Matthew (Author) / College of Health Solutions (Contributor)
Created2017-02-27
128573-Thumbnail Image.png
Description

Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6Clow and Ly6Chi) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E2 is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene

Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6Clow and Ly6Chi) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E2 is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene ablation of the Ep3 receptor in mice suppresses accumulation of Ly6Clow Mos/Mps in infarcted hearts. Ep3 deletion in Mos/Mps markedly attenuates healing after MI by reducing neovascularization in peri-infarct zones. Ep3 deficiency diminishes CX3C chemokine receptor 1 (CX3CR1) expression and vascular endothelial growth factor (VEGF) secretion in Mos/Mps by suppressing TGFβ1 signaling and subsequently inhibits Ly6Clow Mos/Mps migration and angiogenesis. Targeted overexpression of Ep3 receptors in Mos/Mps improves wound healing by enhancing angiogenesis. Thus, the PGE2/Ep3 axis promotes cardiac healing after MI by activating reparative Ly6Clow Mos/Mps, indicating that Ep3 receptor activation may be a promising therapeutic target for acute MI.

ContributorsTang, Juan (Author) / Shen, Yujun (Author) / Chen, Guilin (Author) / Wan, Qiangyou (Author) / Wang, Kai (Author) / Zhang, Jian (Author) / Qin, Jing (Author) / Liu, Guizhu (Author) / Zuo, Shengkai (Author) / Tao, Bo (Author) / Yu, Yu (Author) / Wang, Junwen (Author) / Lazarus, Michael (Author) / Yu, Ying (Author) / College of Health Solutions (Contributor)
Created2017-03-03
127902-Thumbnail Image.png
Description

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood mononuclear cells (PBMCs) of a clinically diagnosed AD patient [ASUi003-A] and a non-demented control (NDC) patient [ASUi004-A] homozygous for the APOE4 risk allele. These hiPSCs maintained their original genotype, expressed pluripotency markers, exhibited a normal karyotype, and retained the ability to differentiate into cells representative of the three germ layers.

ContributorsBrookhouser, Nicholas (Author) / Zhang, Ping (Author) / Caselli, Richard (Author) / Kim, Jean J. (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-10
127886-Thumbnail Image.png
Description

Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF

Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF logics in regulating target genes. By combining cis-regulatory logics and transcriptional kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene expression data and TF-DNA-binding signals in order to identify the TF logics and to reconstruct the underlying TRNs. We evaluated the newly developed methodology using simulation, comparison and application studies, and the results not only show their consistence with existing knowledge, but also demonstrate its ability to accurately reconstruct TRNs in biological complex systems.

ContributorsYan, Bin (Author) / Guan, Daogang (Author) / Wang, Chao (Author) / Wang, Junwen (Author) / He, Bing (Author) / Qin, Jing (Author) / Boheler, Kenneth R. (Author) / Lu, Aiping (Author) / Zhang, Ge (Author) / Zhu, Hailong (Author) / College of Health Solutions (Contributor)
Created2017-10-19
127863-Thumbnail Image.png
Description

Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising

Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs) demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages.

ContributorsLou, Chih-Hong (Author) / Dumdie, Jennifer (Author) / Goetz, Alexandra (Author) / Shum, Eleen Y. (Author) / Brafman, David (Author) / Liao, Xiaoyan (Author) / Mora-Castilla, Sergio (Author) / Ramaiah, Madhuvanthi (Author) / Cook-Andersen, Heidi (Author) / Laurent, Louise (Author) / Wilkinson, Miles F. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-06-14
128861-Thumbnail Image.png
Description

Mobile devices are a promising channel for delivering just-in-time guidance and support for improving key daily health behaviors. Despite an explosion of mobile phone applications aimed at physical activity and other health behaviors, few have been based on theoretically derived constructs and empirical evidence. Eighty adults ages 45 years and

Mobile devices are a promising channel for delivering just-in-time guidance and support for improving key daily health behaviors. Despite an explosion of mobile phone applications aimed at physical activity and other health behaviors, few have been based on theoretically derived constructs and empirical evidence. Eighty adults ages 45 years and older who were insufficiently physically active, engaged in prolonged daily sitting, and were new to smartphone technology, participated in iterative design development and feasibility testing of three daily activity smartphone applications based on motivational frames drawn from behavioral science theory and evidence. An “analytically” framed custom application focused on personalized goal setting, self-monitoring, and active problem solving around barriers to behavior change. A “socially” framed custom application focused on social comparisons, norms, and support.

An “affectively” framed custom application focused on operant conditioning principles of reinforcement scheduling and emotional transference to an avatar, whose movements and behaviors reflected the physical activity and sedentary levels of the user. To explore the applications' initial efficacy in changing regular physical activity and leisure-time sitting, behavioral changes were assessed across eight weeks in 68 participants using the CHAMPS physical activity questionnaire and the Australian sedentary behavior questionnaire. User acceptability of and satisfaction with the applications was explored via a post-intervention user survey. The results indicated that the three applications were sufficiently robust to significantly improve regular moderate-to-vigorous intensity physical activity and decrease leisure-time sitting during the 8-week behavioral adoption period. Acceptability of the applications was confirmed in the post-intervention surveys for this sample of midlife and older adults new to smartphone technology. Preliminary data exploring sustained use of the applications across a longer time period yielded promising results. The results support further systematic investigation of the efficacy of the applications for changing these key health-promoting behaviors.

ContributorsKing, Abby C. (Author) / Hekler, Eric (Author) / Greico, Lauren A. (Author) / Winter, Sandra J. (Author) / Sheats, Jylana L. (Author) / Buman, Matthew (Author) / Banerjee, Banny (Author) / Robinson, Thomas N. (Author) / Cirimele, Jesse (Author) / College of Health Solutions (Contributor)
Created2013-04-25
128638-Thumbnail Image.png
Description

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present cepip, a joint likelihood framework, for estimating a variant’s regulatory probability in a context-dependent manner. Our method exhibits significant GWAS signal enrichment and is superior to existing cell type-specific methods. Furthermore, using phenotypically relevant epigenomes to weight the GWAS single-nucleotide polymorphisms, we improve the statistical power of the gene-based association test.

ContributorsLi, Mulin Jun (Author) / Li, Miaoxin (Author) / Liu, Zipeng (Author) / Yan, Bin (Author) / Pan, Zhicheng (Author) / Huang, Dandan (Author) / Liang, Qian (Author) / Ying, Dingge (Author) / Xu, Feng (Author) / Yao, Hongcheng (Author) / Wang, Panwen (Author) / Kocher, Jean-Pierre A. (Author) / Xia, Zhengyuan (Author) / Sham, Pak Chung (Author) / Liu, Jun S. (Author) / Wang, Junwen (Author) / College of Health Solutions (Contributor)
Created2017-03-16