This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 44
Filtering by

Clear all filters

129552-Thumbnail Image.png
Description

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80 °C, −20 °C, and room temperature and exposed to multiple freeze-thaw cycles and other adverse conditions in order to assess the possibility that protein oxidation may occur as a result of poor sample storage or handling. Samples from a healthy donor and a participant with poorly controlled type 2 diabetes started at the same low level of protein oxidation and behaved similarly; significant increases in albumin oxidation via S-cysteinylation were found to occur within hours at room temperature and days at −20 °C. Methionine oxidation of apoA-I took place on a longer time scale, setting in after albumin oxidation reached a plateau. Freeze–thaw cycles had a minimal effect on protein oxidation. In matched collections, protein oxidation in serum was the same as that in plasma. Albumin and apoA-I oxidation were not affected by sample headspace or the degree to which vials were sealed. ApoA-I, however, was unexpectedly found to oxidize faster in samples with lower surface-area-to-volume ratios. An initial survey of samples from patients with inflammatory conditions normally associated with elevated oxidative stress-including acute myocardial infarction and prostate cancer—demonstrated a lack of detectable apoA-I oxidation. Albumin S-cysteinylation in these samples was consistent with known but relatively brief exposures to temperatures above −30 °C (the freezing point of blood plasma). Given their properties and ease of analysis, these oxidized proteoforms, once fully validated, may represent the first markers of blood plasma specimen integrity based on direct measurement of oxidative molecular damage that can occur under suboptimal storage conditions.

ContributorsBorges, Chad (Author) / Rehder, Douglas (Author) / Jensen, Sally (Author) / Schaab, Matthew (Author) / Sherma, Nisha (Author) / Yassine, Hussein (Author) / Nikolova, Boriana (Author) / Breburda, Christian (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
129588-Thumbnail Image.png
Description

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations.

We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data.

Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.

ContributorsCiais, P. (Author) / Dolman, A. J. (Author) / Bombelli, A. (Author) / Duren, R. (Author) / Peregon, A. (Author) / Rayner, P. J. (Author) / Miller, C. (Author) / Gobron, N. (Author) / Kinderman, G. (Author) / Marland, G. (Author) / Gruber, N. (Author) / Chevallier, F. (Author) / Andres, R. J. (Author) / Balsamo, G. (Author) / Bopp, L. (Author) / Breon, F. -M. (Author) / Broquet, G. (Author) / Dargaville, R. (Author) / Battin, T. J. (Author) / Borges, A. (Author) / Bovensmann, H. (Author) / Buchwitz, M. (Author) / Butler, J. (Author) / Canadell, J. G. (Author) / Cook, R. B. (Author) / DeFries, R. (Author) / Engelen, R. (Author) / Gurney, Kevin (Author) / Heinze, C. (Author) / Heimann, M. (Author) / Held, A. (Author) / Henry, M. (Author) / Law, B. (Author) / Luyssaert, S. (Author) / Miller, J. (Author) / Moriyama, T. (Author) / Moulin, C. (Author) / Myneni, R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129478-Thumbnail Image.png
Description

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Regridding of fossil fuel CO2 emissions (FFCO2) from fine to coarse grids to enable atmospheric transport simulations can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. For example, emissions originally emanating from the land are emitted from a grid cell for which the vertical mixing reflects the roughness and/or surface energy exchange of an ocean surface. We test this potential "dynamical inconsistency" by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are as follows: (1) a commonly used method that allocates emissions to grid cells with no attempt to ensure dynamical consistency with atmospheric transport and (2) an improved method that reallocates emissions to grid cells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 TgC grid cell-1 yr-1 (−3.39 kgC m-2 yr-1) to +30.0 TgC grid cell-1 yr-1 (+2.6 kgC m-2 yr-1) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency.

ContributorsZhang, X. (Author) / Gurney, Kevin (Author) / Rayner, P. (Author) / Liu, Y. (Author) / Asefi-Najafabady, Salvi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
Description

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO[subscript 2] emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO[subscript 2] emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

ContributorsAsefi-Najafabady, Salvi (Author) / Rayner, P. J. (Author) / Gurney, Kevin (Author) / McRobert, A. (Author) / Song, Y. (Author) / Coltin, K. (Author) / Huang, J. (Author) / Elvidge, C. (Author) / Baugh, K. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-16
128975-Thumbnail Image.png
Description

Background: Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move

Background: Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move a step beyond detection and into the relative quantification of Cys-SOH within specific proteins found in a complex biological setting--namely, human plasma.

Results: This report describes the possibilities and limitations of performing such analyses based on the use of thionitrobenzoic acid and dimedone-based probes which are commonly employed to trap Cys-SOH. Results obtained by electrospray ionization-based mass spectrometric immunoassay reveal the optimal type of probe for such analyses as well as the reproducible relative quantification of Cys-SOH within albumin and transthyretin extracted from human plasma--the latter as a protein previously unknown to be modified by Cys-SOH.

Conclusions: The relative quantification of Cys-SOH within specific proteins in a complex biological setting can be accomplished, but several analytical precautions related to trapping, detecting, and quantifying Cys-SOH must be taken into account prior to pursuing its study in such matrices.

ContributorsRehder, Douglas (Author) / Borges, Chad (Author) / Biodesign Institute (Contributor)
Created2010-07-01
128773-Thumbnail Image.png
Description

Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form

Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form amyloid. However, the relative abundance of truncated SAA in diabetes and chronic kidney disease is not known.

Methods: Using mass spectrometric immunoassay, the abundance of SAA truncations relative to the native variants was examined in plasma of 91 participants with type 2 diabetes and chronic kidney disease and 69 participants without diabetes.

Results: The ratio of SAA 1.1 (missing N-terminal arginine) to native SAA 1.1 was lower in diabetics compared to non-diabetics (p = 0.004), and in males compared to females (p<0.001). This ratio was negatively correlated with glycated hemoglobin (r = −0.32, p<0.001) and triglyceride concentrations (r = −0.37, p<0.001), and positively correlated with HDL cholesterol concentrations (r = 0.32, p<0.001).

Conclusion: The relative abundance of the N-terminal arginine truncation of SAA1.1 is significantly decreased in diabetes and negatively correlates with measures of glycemic and lipid control.

ContributorsYassine, Hussein N. (Author) / Trenchevska, Olgica (Author) / He, Huijuan (Author) / Borges, Chad (Author) / Nedelkov, Dobrin (Author) / Mack, Wendy (Author) / Kono, Naoko (Author) / Koska, Juraj (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Biodesign Institute (Contributor)
Created2015-01-21
128299-Thumbnail Image.png
Description

Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such

Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such measurements to evaluate bottom-up emissions inventories of fossil fuel CO2(CO2ff), as well as those for other co-emitted species. Here we use observations of 14CO2 and a series of primary hydrocarbons and combustion tracers from discrete air samples collected between June 2009 and September 2010 at the National Oceanic and Atmospheric Administration Boulder Atmospheric Observatory (BAO; Lat: 40.050° N, Lon: 105.004° W) to derive emission ratios of each species with respect to CO2ff. The BAO tower is situated at the boundary of the Denver metropolitan area to the south and a large industrial and agricultural region to the north and east, making it an ideal location to study the contrasting mix of emissions from the activities in each region. The species considered in this analysis are carbon monoxide (CO), methane (CH4), acetylene (C2H2), benzene (C6H6), and C3–C5 alkanes. We estimate emissions for a subset of these species by using the Vulcan high resolution CO2ff emission data product as a reference. We find that CO is overestimated in the 2008 National Emissions Inventory (NEI08) by a factor of ~2. A close evaluation of the inventory suggests that the ratio of CO emitted per unit fuel burned from on-road gasoline vehicles is likely over-estimated by a factor of 2.5. Using a wind-directional analysis of the data, we find enhanced concentrations of CH4, relative to CO2ff, in air influenced by emissions to the north and east of the BAO tower when compared to air influenced by emissions in the Denver metro region to the south. Along with enhanced CH4, the strongest enhancements of the C3–C5 alkanes are also found in the north and east wind sector, suggesting that both the alkane and CH4 enhancements are sourced from oil and gas fields located to the northeast, though it was not possible to rule out the contribution of non oil and gas CH4 sources.

ContributorsLaFranchi, B. W. (Author) / Petron, G. (Author) / Miller, J. B. (Author) / Lehman, S. J. (Author) / Andrews, A. E. (Author) / Dlugokencky, E. J. (Author) / Hall, B. (Author) / Miller, B. R. (Author) / Montzka, S. A. (Author) / Neff, W. (Author) / Novelli, P. C. (Author) / Sweeney, C. (Author) / Turnbull, J. C. (Author) / Wolfe, D. E. (Author) / Tans, P. P. (Author) / Gurney, Kevin (Author) / Guilderson, T. P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-15
128318-Thumbnail Image.png
Description

Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study

Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study the uncertainties in an aircraft-based mass balance approach for quantifying carbon dioxide and methane emissions from an urban environment, focusing on Indianapolis, IN, USA, are described. The relatively level terrain of Indianapolis facilitated the application of mean wind fields in the mass balance approach. We investigate the uncertainties in our aircraft-based mass balance approach by (1) assessing the sensitivity of the measured flux to important measurement and analysis parameters including wind speed, background CO2 and CH4, boundary layer depth, and interpolation technique, and (2) determining the flux at two or more downwind distances from a point or area source (with relatively large source strengths such as solid waste facilities and a power generating station) in rapid succession, assuming that the emission flux is constant. When we quantify the precision in the approach by comparing the estimated emissions derived from measurements at two or more downwind distances from an area or point source, we find that the minimum and maximum repeatability were 12 and 52%, with an average of 31%. We suggest that improvements in the experimental design can be achieved by careful determination of the background concentration, monitoring the evolution of the boundary layer through the measurement period, and increasing the number of downwind horizontal transect measurements at multiple altitudes within the boundary layer.

ContributorsCambaliza, M. O. L. (Author) / Shepson, P. B. (Author) / Caulton, D. R. (Author) / Stirm, B. (Author) / Samarov, D. (Author) / Gurney, Kevin (Author) / Turnbull, J. (Author) / Davis, K. J. (Author) / Possolo, A. (Author) / Karion, A. (Author) / Sweeney, C. (Author) / Moser, B. (Author) / Hendricks, A. (Author) / Lauvaux, T. (Author) / Mays, K. (Author) / Whetstone, J. (Author) / Huang, J. (Author) / Razlivanov, Igor (Author) / Niles, N. L. (Author) / Richardson, S. J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-02
128168-Thumbnail Image.png
Description

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time series for CO2 contributions from fossil fuel combustion (Cff) for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub-city source regions in the LA megacity domain when wind directions are considered.

ContributorsNewman, Sally (Author) / Xu, Xiaomei (Author) / Gurney, Kevin (Author) / Hsu, Ying Kuang (Author) / Li, King Fai (Author) / Jiang, Xun (Author) / Keeling, Ralph (Author) / Feng, Sha (Author) / O'Keeffe, Darragh (Author) / Patarasuk, Risa (Author) / Wong, Kam Weng (Author) / Rao, Preeti (Author) / Fischer, Marc L. (Author) / Yung, Yuk L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-22
128192-Thumbnail Image.png
Description

Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal,

Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global tracer transport model. Results show an annual FFCO2 rectification varying from −1.35 to +0.13 ppm from the combination of all three cycles. This rectification is driven by a large negative diurnal FFCO2 rectification due to the covariation of diurnal FFCO2 emissions and diurnal vertical mixing, as well as a smaller positive seasonal FFCO2 rectification driven by the covariation of monthly FFCO2 emissions and monthly atmospheric transport. The diurnal FFCO2 emissions are responsible for a diurnal FFCO2 concentration amplitude of up to 9.12 ppm at the grid cell scale. Similarly, the monthly FFCO2 emissions are responsible for a simulated seasonal CO2 amplitude of up to 6.11 ppm at the grid cell scale. The impact of the diurnal FFCO2 emissions, when only sampled in the local afternoon, is also important, causing an increase of +1.13 ppmv at the grid cell scale. The simulated CO2 concentration impacts from the diurnally and seasonally varying FFCO2 emissions are centered over large source regions in the Northern Hemisphere, extending to downwind regions. This study demonstrates the influence of sub-annual variations in FFCO2 emissions on simulated CO2 concentration and suggests that inversion studies must take account of these variations in the affected regions.

ContributorsZhang, Xia (Author) / Gurney, Kevin (Author) / Rayner, Peter (Author) / Baker, David (Author) / Liu, Yu-ping (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-19