This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 57
Filtering by

Clear all filters

190-Thumbnail Image.png
Description

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a critical question is whether these experiences will result in changed behaviors and preferences in the long term. This paper presents initial findings on the likelihood of long-term changes in telework, daily travel, restaurant patronage, and air travel based on survey data collected from adults in the United States in Spring 2020. These data suggest that a sizable fraction of the increase in telework and decreases in both business air travel and restaurant patronage are likely here to stay. As for daily travel modes, public transit may not fully recover its pre-pandemic ridership levels, but many of our respondents are planning to bike and walk more than they used to. These data reflect the responses of a sample that is higher income and more highly educated than the US population. The response of these particular groups to the COVID-19 pandemic is perhaps especially important to understand, however, because their consumption patterns give them a large influence on many sectors of the economy.

Created2020-09-03
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
128262-Thumbnail Image.png
Description

Multilayer structures of TiO2/Ag/TiO2 have been deposited onto flexible substrates by room temperature sputtering to develop indium-free transparent composite electrodes. The effect of Ag thicknesses on optical and electrical properties and the mechanism of conduction have been discussed. The critical thickness (tc) of Ag mid-layer to form a continuous conducting

Multilayer structures of TiO2/Ag/TiO2 have been deposited onto flexible substrates by room temperature sputtering to develop indium-free transparent composite electrodes. The effect of Ag thicknesses on optical and electrical properties and the mechanism of conduction have been discussed. The critical thickness (tc) of Ag mid-layer to form a continuous conducting layer is 9.5 nm and the multilayer has been optimized to obtain a sheet resistance of 5.7 Ω/sq and an average optical transmittance of 90% at 590 nm. The Haacke figure of merit (FOM) for tc has one of the highest FOMs with 61.4 × 10-3 Ω-1/sq.

ContributorsDhar, Aritra (Author) / Alford, Terry (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2013-06-07
127894-Thumbnail Image.png
Description

Lithium-beryllium metal hydrides, which are structurally related to their parent compound, BeH2, offer the highest hydrogen storage capacity by weight among the metal hydrides (15.93 wt. % of hydrogen for LiBeH3). Challenging synthesis protocols have precluded conclusive determination of their crystallographic structure to date, but here we analyze directly the hydrogen

Lithium-beryllium metal hydrides, which are structurally related to their parent compound, BeH2, offer the highest hydrogen storage capacity by weight among the metal hydrides (15.93 wt. % of hydrogen for LiBeH3). Challenging synthesis protocols have precluded conclusive determination of their crystallographic structure to date, but here we analyze directly the hydrogen hopping mechanisms in BeH2 and LiBeH3 using quasielastic neutron scattering, which is especially sensitive to single-particle dynamics of hydrogen. We find that, unlike its parent compound BeH2, lithium-beryllium hydride LiBeH3 exhibits a sharp increase in hydrogen mobility above 265 K, so dramatic that it can be viewed as melting of hydrogen sublattice. We perform comparative analysis of hydrogen jump mechanisms observed in BeH2 and LiBeH3 over a broad temperature range. As microscopic diffusivity of hydrogen is directly related to its macroscopic kinetics, a transition in LiBeH3 so close to ambient temperature may offer a straightforward and effective mechanism to influence hydrogen uptake and release in this very lightweight hydrogen storage compound.

ContributorsMamontov, Eugene (Author) / Kolesnikov, Alexander I. (Author) / Sampath, Sujatha (Author) / Yarger, Jeffrey (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2017-11-24
127883-Thumbnail Image.png
Description

Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge

Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge to implement. Here, we demonstrate a rapid, simple, indiscriminate, and minimally perturbing cell patterning method using a laser fabricated polymer stencil. The stencil fabrication process requires no stencil-substrate alignment, and is readily adaptable to various substrate geometries and experiments.

ContributorsMessner, Jacob J. (Author) / Glenn, Honor (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2017-12-19
127853-Thumbnail Image.png
Description

Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of

Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field.

ContributorsKelbauskas, Laimonas (Author) / Shetty, Rishabh Manoj (Author) / Cao, Bin (Author) / Wang, Kuo-Chen (Author) / Smith, Dean (Author) / Wang, Hong (Author) / Chao, Shi-Hui (Author) / Gangaraju, Sandhya (Author) / Ashcroft, Brian (Author) / Kritzer, Margaret (Author) / Glenn, Honor (Author) / Johnson, Roger (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2017-12-06
127817-Thumbnail Image.png
Description

Accessibility is increasingly used as a metric when evaluating changes to public transport systems. Transit travel times contain variation depending on when one departs relative to when a transit vehicle arrives, and how well transfers are coordinated given a particular timetable. In addition, there is necessarily uncertainty in the value

Accessibility is increasingly used as a metric when evaluating changes to public transport systems. Transit travel times contain variation depending on when one departs relative to when a transit vehicle arrives, and how well transfers are coordinated given a particular timetable. In addition, there is necessarily uncertainty in the value of the accessibility metric during sketch planning processes, due to scenarios which are underspecified because detailed schedule information is not yet available. This article presents a method to extend the concept of "reliable" accessibility to transit to address the first issue, and create confidence intervals and hypothesis tests to address the second.

ContributorsConway, Matthew Wigginton (Author) / Byrd, Andrew (Author) / van Eggermond, Michael (Author)
Created2018-07-23
127809-Thumbnail Image.png
Description

There is a need for indicators of transportation-land use system quality that are understandable to a wide range of stakeholders, and which can provide immediate feedback on the quality of interactively designed scenarios. Location-based accessibility indicators are promising candidates, but indicator values can vary strongly depending on time of day

There is a need for indicators of transportation-land use system quality that are understandable to a wide range of stakeholders, and which can provide immediate feedback on the quality of interactively designed scenarios. Location-based accessibility indicators are promising candidates, but indicator values can vary strongly depending on time of day and transfer wait times. Capturing this variation increases complexity, slowing down calculations. We present new methods for rapid yet rigorous computation of accessibility metrics, allowing immediate feedback during early-stage transit planning, while being rigorous enough for final analyses. Our approach is statistical, characterizing the uncertainty and variability in accessibility metrics due to differences in departure time and headway-based scenario specification. The analysis is carried out on a detailed multi-modal network model including both public transportation and streets. Land use data are represented at high resolution. These methods have been implemented as open-source software running on commodity cloud infrastructure. Networks are constructed from standard open data sources, and scenarios are built in a map-based web interface. We conclude with a case study, describing how these methods were applied in a long-term transportation planning process for metropolitan Amsterdam.

ContributorsConway, Matthew Wigginton (Author) / Byrd, Andrew (Author) / van der Linden, Marco (Author)
Created2017
128849-Thumbnail Image.png
Description

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the β-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.

ContributorsMarkwardt, Michele L. (Author) / Kremers, Gert-Jan (Author) / Kraft, Catherine A. (Author) / Ray, Krishanu (Author) / Cranfill, Paula J. C. (Author) / Wilson, Korey A. (Author) / Day, Richard N. (Author) / Wachter, Rebekka (Author) / Davidson, Michael W. (Author) / Rizzo, Mark A. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2011-03-29
128823-Thumbnail Image.png
Description

With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an

With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH2) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields.

ContributorsSu, Fengyu (Author) / Alam, Ruhaniyah (Author) / Mei, Qian (Author) / Tian, Yanqing (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2011-09-06