This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

Description

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to the reaction center, where charge separation takes place. The average number of DNA three-arm junctions per reaction center was tuned from 0.75 to 2.35. This DNA-templated multichromophore system serves as a modular light-harvesting antenna that is capable of being optimized for its spectral properties, energy transfer efficiency, and photostability, allowing one to adjust both the size and spectrum of the resulting structures. This may serve as a useful test bed for developing nanostructured photonic systems.

ContributorsDutta, Palash (Author) / Levenberg, Symon (Author) / Loskutov, Andrey (Author) / Jun, Daniel (Author) / Saer, Rafael (Author) / Beatty, J. Thomas (Author) / Lin, Su (Author) / Liu, Yan (Author) / Woodbury, Neal (Author) / Yan, Hao (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-11-26
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
127848-Thumbnail Image.png
Description

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in library-based applications. Here we describe a simple approach for sequence analysis directly on solid surfaces that is both high speed and high throughput, utilizing equipment available in most protein analysis facilities. In this approach, surface bound peptides, selectively labeled at their N-termini with a positive charge-bearing group, are subjected to controlled degradation in ammonia gas, resulting in a set of fragments differing by a single amino acid that remain spatially confined on the surface they were bound to. These fragments can then be analyzed by MALDI mass spectrometry, and the peptide sequences read directly from the resulting spectra.

ContributorsZhao, Zhan-Gong (Author) / Cordovez, Lalaine Anne (Author) / Johnston, Stephen (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2017-12-19
128506-Thumbnail Image.png
Description

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent,

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent, orographic precipitation adjustment over Mexico and parts of Canada, and reduction of transboundary discontinuities. The impacts of adjusting gridded precipitation for orographic effects are quantified by scaling precipitation to an elevation-aware 1981-2010 precipitation climatology in Mexico and Canada. Differences are evaluated in terms of total precipitation as well as by hydrologic quantities simulated with a land surface model. Overall, orographic correction impacts total precipitation by up to 50% in mountainous regions outside CONUS. Hydrologic fluxes show sensitivities of similar magnitude, with discharge more sensitive than evapotranspiration and soil moisture. Because of the consistent gridding methodology, the current product reduces transboundary discontinuities as compared with a commonly used reanalysis product, making it suitable for estimating large-scale hydrometeorologic phenomena.

ContributorsLivneh, Ben (Author) / Bohn, Theodore (Author) / Pierce, David W. (Author) / Munoz-Arriola, Francisco (Author) / Nijssen, Bart (Author) / Vose, Russell (Author) / Cayan, Daniel R. (Author) / Brekke, Levi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-18
128525-Thumbnail Image.png
Description

Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact

Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

ContributorsZhao, Zhao (Author) / Fu, Jinglin (Author) / Dhakal, Soma (Author) / Johnson-Buck, Alexander (Author) / Liu, Minghui (Author) / Zhang, Ting (Author) / Woodbury, Neal (Author) / Liu, Yan (Author) / Walter, Nils G. (Author) / Yan, Hao (Author) / Biodesign Institute (Contributor)
Created2016-02-10
128797-Thumbnail Image.png
Description

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

ContributorsFu, Jinglin (Author) / Reinhold, Jeremy (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2011-04-08
129532-Thumbnail Image.png
Description

Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the

Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein–DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

ContributorsFu, Jinglin (Author) / Yang, Yuhe (Author) / Johnson-Buck, Alexander (Author) / Liu, Minghui (Author) / Liu, Yan (Author) / Walter, Nils G. (Author) / Woodbury, Neal (Author) / Yan, Hao (Author) / Biodesign Institute (Contributor)
Created2014-07-01
127990-Thumbnail Image.png
Description

The relationship between sequence and binding properties of an aptamer for immunoglobulin E (IgE) was investigated using custom DNA microarrays. Single, double and some triple mutations of the aptamer sequence were created to evaluate the importance of specific base composition on aptamer binding. The majority of the positions in the

The relationship between sequence and binding properties of an aptamer for immunoglobulin E (IgE) was investigated using custom DNA microarrays. Single, double and some triple mutations of the aptamer sequence were created to evaluate the importance of specific base composition on aptamer binding. The majority of the positions in the aptamer sequence were found to be immutable, with changes at these positions resulting in more than a 100-fold decrease in binding affinity. Improvements in binding were observed by altering the stem region of the aptamer, suggesting that it plays a significant role in binding. Results obtained for the various mutations were used to estimate the information content and the probability of finding a functional aptamer sequence by selection from a random library. For the IgE-binding aptamer, this probability is on the order of 10-10 to 10-9. Results obtained for the double and triple mutations also show that there are no compensatory mutations within the space defined by those mutations. Apparently, at least for this particular aptamer, the functional sequence space can be represented as a rugged landscape with sharp peaks defined by highly constrained base compositions. This makes the rational optimization of aptamer sequences using step-wise mutagenesis approaches very challenging.

ContributorsKatilius, Evaldas (Author) / Flores, Carole (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2007-12-01
128290-Thumbnail Image.png
Description

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land cover-supported, atmospherically-corrected dynamic mixture model applied to 20+ years (1992–2013) of combined, daily, passive/active microwave remote sensing data. The resulting product, known as Surface Water Microwave Product Series (SWAMPS), shows strong microwave sensitivity to sub-grid scale open water and inundated wetlands comprising open plant canopies. SWAMPS’ FW compares favorably (R2 = 91%–94%) with higher-resolution, global-scale maps of open water from MODIS and SRTM-MOD44W. Correspondence of SWAMPS with open water and wetland products from satellite SAR in Alaska and the Amazon deteriorates when exposed wetlands or inundated forests captured by the SAR products were added to the open water fraction reflecting SWAMPS’ inability to detect water underneath the soil surface or beneath closed forest canopies. Except for a brief period of drying during the first 4 years of observation, the inundation extent for the global domain excluding the coast was largely stable. Regionally, inundation in North America is advancing while inundation is on the retreat in Tropical Africa and North Eurasia. SWAMPS provides a consistent and long-term global record of daily FW dynamics, with documented accuracies suitable for hydrologic assessment and global change-related investigations.

ContributorsSchroeder, Ronny (Author) / McDonald, Kyle C. (Author) / Chapman, Bruce D. (Author) / Jensen, Katherine (Author) / Podest, Erika (Author) / Tessler, Zachary D. (Author) / Bohn, Theodore (Author) / Zimmermann, Reiner (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-12-09
128275-Thumbnail Image.png
Description

A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20  cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models,

A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20  cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million  km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.

ContributorsWang, Wenli (Author) / Rinke, Annette (Author) / Moore, John C. (Author) / Ji, Duoying (Author) / Cui, Xuefeng (Author) / Peng, Shushi (Author) / Lawrence, David M. (Author) / McGuire, A. David (Author) / Burke, Eleanor J. (Author) / Chen, Xiaodong (Author) / Decharme, Bertrand (Author) / Koven, Charles (Author) / MacDougall, Andrew (Author) / Saito, Kazuyuki (Author) / Zhang, Wenxin (Author) / Alkama, Ramdane (Author) / Bohn, Theodore (Author) / Ciais, Philippe (Author) / Delire, Christine (Author) / Gouttevin, Isabelle (Author) / Hajima, Tomohiro (Author) / Krinner, Gerhard (Author) / Lettenmaier, Dennis P. (Author) / Miller, Paul A. (Author) / Smith, Benjamin (Author) / Sueyoshi, Tetsuo (Author) / Sherstiukov, Artem B. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-11