This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 28
Filtering by

Clear all filters

129333-Thumbnail Image.png
Description

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3′untranslated regions (3′UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3′untranslated regions (3′UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is also a major contributor to cancer progression, thus there is a critical need to validate miRNA targets in high-throughput to understand miRNAs' contribution to tumorigenesis. Here we introduce a novel high-throughput assay to detect miRNA targets in 3′UTRs, called Luminescent Identification of Functional Elements in 3′UTRs (3′LIFE). We demonstrate the feasibility of 3′LIFE using a data set of 275 human 3′UTRs and two cancer-relevant miRNAs, let-7c and miR-10b, and compare our results to alternative methods to detect miRNA targets throughout the genome. We identify a large number of novel gene targets for these miRNAs, with only 32% of hits being bioinformatically predicted and 27% directed by non-canonical interactions. Functional analysis of target genes reveals consistent roles for each miRNA as either a tumor suppressor (let-7c) or oncogenic miRNA (miR-10b), and preferentially target multiple genes within regulatory networks, suggesting 3′LIFE is a rapid and sensitive method to detect miRNA targets in high-throughput.

ContributorsWolter, Justin (Author) / Kotagama, Kasuen (Author) / Pierre-Bez, Alexandra C. (Author) / Firago, Mari (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-29
129263-Thumbnail Image.png
Description

Background: To be effective, orally administered live Salmonella vaccines must first survive their encounter with the low pH environment of the stomach. To enhance survival, an antacid is often given to neutralize the acidic environment of the stomach just prior to or concomitant with administration of the vaccine. One drawback of

Background: To be effective, orally administered live Salmonella vaccines must first survive their encounter with the low pH environment of the stomach. To enhance survival, an antacid is often given to neutralize the acidic environment of the stomach just prior to or concomitant with administration of the vaccine. One drawback of this approach, from the perspective of the clinical trial volunteer, is that the taste of a bicarbonate-based acid neutralization system can be unpleasant. Thus, we explored an alternative method that would be at least as effective as bicarbonate and with a potentially more acceptable taste. Because ingestion of protein can rapidly buffer stomach pH, we examined the possibility that the protein-rich Ensure® Nutrition shakes would be effective alternatives to bicarbonate.

Results: We tested one Salmonella enterica serovar Typhimurium and three Salmonella Typhi vaccine strains and found that all strains survived equally well when incubated in either Ensure® or bicarbonate. In a low gastric pH mouse model, Ensure® worked as well or better than bicarbonate to enhance survival through the intestinal tract, although neither agent enhanced the survival of the S. Typhi test strain possessing a rpoS mutation.

Conclusions: Our data show that a protein-rich drink such as Ensure® Nutrition shakes can serve as an alternative to bicarbonate for reducing gastric pH prior to administration of a live Salmonella vaccine.

ContributorsBrenneman, Karen (Author) / Gonzales, Amanda (Author) / Roland, Kenneth (Author) / Curtiss, Roy (Author) / Biodesign Institute (Contributor)
Created2015-03-29
128827-Thumbnail Image.png
Description

Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion

Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion (Δlrp) and constitutive-lrp expression (lrpC) mutant strains. In this work, we used chromosomal PfimA-lacZ fusions and yeast agglutination assays to confirm and extend our previous results. Direct binding of Lrp to PfimA was shown by an electrophoretic mobility shift assay (EMSA) and DNA footprinting assay. Site-directed mutagenesis revealed that the Lrp-binding motifs in PfimA play a role in both activation and repression of type 1 fimbriae production. Overproduction of Lrp also abrogates fimZ expression. EMSA data showed that Lrp and FimZ proteins independently bind to PfimA without competitive exclusion. In addition, both Lrp and FimZ binding to PfimA caused a hyper retardation (supershift) of the DNA-protein complex compared to the shift when each protein was present alone. Nutrition-dependent cellular Lrp levels closely correlated with the amount of type 1 fimbriae production. These observations suggest that Lrp plays important roles in type 1 fimbriation by acting as both a positive and negative regulator and its effect depends, at least in part, on the cellular concentration of Lrp in response to the nutritional environment.

ContributorsBaek, Chang-Ho (Author) / Kang, Ho-Young (Author) / Roland, Kenneth (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2011-10-28
128828-Thumbnail Image.png
Description

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial preparations prior to clinical trials.

Created2014-01-29
128920-Thumbnail Image.png
Description

Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains

Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1) is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.

ContributorsLuo, Yingqin (Author) / Kong, Qingke (Author) / Yang, Jiseon (Author) / Mitra, Arindam (Author) / Golden, Greg (Author) / Wanda, Soo-Young (Author) / Roland, Kenneth (Author) / Jensen, Roderick V. (Author) / Ernst, Peter B. (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2012-07-06
129065-Thumbnail Image.png
Description

Background: Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their

Background: Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their role in lizard regeneration has not been investigated.

Results: MicroRNA sequencing of green anole lizard (Anolis carolinensis) regenerating tail and associated tissues revealed 350 putative novel and 196 known microRNA precursors. Eleven microRNAs were differentially expressed between the regenerating tail tip and base during maximum outgrowth (25 days post autotomy), including miR-133a, miR-133b, and miR-206, which have been reported to regulate regeneration and stem cell proliferation in other model systems. Three putative novel differentially expressed microRNAs were identified in the regenerating tail tip.

Conclusions: Differentially expressed microRNAs were identified in the regenerating lizard tail, including known regulators of stem cell proliferation. The identification of 3 putative novel microRNAs suggests that regulatory networks, either conserved in vertebrates and previously uncharacterized or specific to lizards, are involved in regeneration. These findings suggest that differential regulation of microRNAs may play a role in coordinating the timing and expression of hundreds of genes involved in regeneration.

ContributorsHutchins, Elizabeth (Author) / Eckalbar, Walter (Author) / Wolter, Justin (Author) / Mangone, Marco (Author) / Kusumi, Kenro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-05
129076-Thumbnail Image.png
Description

Background: Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from Caenorhabditis

Background: Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from Caenorhabditis elegans intestine, pharynx and body muscle tissues and study changes in their tissue-specific transcriptomes and 3’UTRomes.

Results: We have identified thousands of novel genes and isoforms differentially expressed between these three tissues. The intestine transcriptome is expansive, expressing over 30% of C. elegans mRNAs, while muscle transcriptomes are smaller but contain characteristic unique gene signatures. Active promoter regions in all three tissues reveal both known and novel enriched tissue-specific elements, along with putative transcription factors, suggesting novel tissue-specific modes of transcription initiation. We have precisely mapped approximately 20,000 tissue-specific polyadenylation sites and discovered that about 30% of transcripts in somatic cells use alternative polyadenylation in a tissue-specific manner, with their 3’UTR isoforms significantly enriched with microRNA targets.

Conclusions: For the first time, PAT-Seq allowed us to directly study tissue specific gene expression changes in an in vivo setting and compare these changes between three somatic tissues from the same organism at single-base resolution within the same experiment. We pinpoint precise tissue-specific transcriptome rearrangements and for the first time link tissue-specific alternative polyadenylation to miRNA regulation, suggesting novel and unexplored tissue-specific post-transcriptional regulatory networks in somatic cells.

ContributorsBlazie, Stephen (Author) / Babb, Cody (Author) / Wilky, Henry (Author) / Rawls, Alan (Author) / Park, Jin (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-20
129101-Thumbnail Image.png
Description

Background: 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized

Background: 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized due to a lack of high-throughput (HT) tools to study 3′UTR biology. HT cloning efforts such as the human ORFeome exemplify the potential benefits of genomic repositories for studying human disease, especially in relation to the discovery of biomarkers and targets for therapeutic agents. Currently there are no publicly available human 3′UTR libraries. To address this we have prepared the first version of the human 3′UTRome (h3′UTRome v1) library. The h3′UTRome is produced to a single high quality standard using the same recombinational cloning technology used for the human ORFeome, enabling universal operating methods and high throughput experimentation. The library is thoroughly sequenced and annotated with simple online access to information, and made publicly available through gene repositories at low cost to all scientists with minimal restriction.

Results: The first release of the h3′UTRome library comprises 1,461 human 3′UTRs cloned into Gateway® entry vectors, ready for downstream analyses. It contains 3′UTRs for 985 transcription factors, 156 kinases, 171 RNA binding proteins, and 186 other genes involved in gene regulation and in disease. We demonstrate the feasibility of the h3′UTRome library by screening a panel of 87 3′UTRs for targeting by two miRNAs: let-7c, which is implicated in tumorigenesis, and miR-221, which is implicated in atherosclerosis and heart disease. The panel is enriched with genes involved in the RAS signaling pathway, putative novel targets for the two miRNAs, as well as genes implicated in tumorigenesis and heart disease.

Conclusions: The h3′UTRome v1 library is a modular resource that can be utilized for high-throughput screens to identify regulatory interactions between trans-acting factors and 3′UTRs, Importantly, the library can be customized based on the specifications of the researcher, allowing the systematic study of human 3′UTR biology.

ContributorsKotagama, Kasuen (Author) / Babb, Cody (Author) / Wolter, Justin (Author) / Murphy, Ronan P. (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-12-09
128885-Thumbnail Image.png
Description

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established.

Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.

Created2011-12-19
129021-Thumbnail Image.png
Description

Background: Salmonella has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in E. coli by mutating several genes including the recA, recE, recF and recJ. However, to

Background: Salmonella has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in E. coli by mutating several genes including the recA, recE, recF and recJ. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in Salmonella enterica.

Results: The effect of recA, recF and recJ deletions on DNA recombination was examined in three serotypes of Salmonella enterica. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a ΔrecA or ΔrecF mutation; (2) in all three Salmonella serotypes, both ΔrecA and ΔrecF mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) ΔrecA and ΔrecF mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a ΔrecJ mutation could reduce plasmid recombination but was less effective than ΔrecA and ΔrecF mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec[superscript +] strains. A ΔrecA mutation reduced both intrachromosomal recombination and plasmid integration frequencies.

Conclusions: The ΔrecA and ΔrecF mutations can reduce plasmid recombination frequencies in Salmonella enterica, but the effect can vary between serovars. This information will be useful for developing Salmonella delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.

ContributorsZhang, Xiangmin (Author) / Wanda, Soo-Young (Author) / Brenneman, Karen (Author) / Kong, Wei (Author) / Zhang, Xin (Author) / Roland, Kenneth (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2011-02-08