This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 34
Filtering by

Clear all filters

129533-Thumbnail Image.png
Description

Novel hydride chemistries are employed to deposit light-emitting Ge1-y Snyalloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold

Novel hydride chemistries are employed to deposit light-emitting Ge1-y Snyalloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold (and higher) decrease in lattice mismatch between film and virtual substrate, allowing direct integration of bulk-like crystals with planar surfaces and relatively low dislocation densities. For y ≤ 0.06, the CVD precursors used were digermane Ge2H6 and deuterated stannane SnD4. For y ≥ 0.06, the Ge precursor was changed to trigermane Ge3H8, whose higher reactivity enabled the fabrication of supersaturated samples with the target film parameters. In all cases, the Ge wafers were produced using tetragermane Ge4H10 as the Ge source. The photoluminescence intensity from Ge1-y Sny /Ge films is expected to increase relative to Ge1-y Sny /Si due to the less defected interface with the virtual substrate. However, while Ge1-y Sny /Si films are largely relaxed, a significant amount of compressive strain may be present in the Ge1-y Sny /Ge case. This compressive strain can reduce the emission intensity by increasing the separation between the direct and indirect edges. In this context, it is shown here that the proposed CVD approach to Ge1-y Sny /Ge makes it possible to approach film thicknesses of about 1  μm, for which the strain is mostly relaxed and the photoluminescence intensity increases by one order of magnitude relative to Ge1-y Sny /Si films. The observed strain relaxation is shown to be consistent with predictions from strain-relaxation models first developed for the Si1-x Gex /Si system. The defect structure and atomic distributions in the films are studied in detail using advanced electron-microscopy techniques, including aberration corrected STEM imaging and EELS mapping of the average diamond–cubic lattice.

ContributorsSenaratne, Charutha Lasitha (Author) / Gallagher, J. D. (Author) / Jiang, Liying (Author) / Aoki, Toshihiro (Author) / Smith, David (Author) / Menéndez, Jose (Author) / Kouvetakis, John (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-10-07
129363-Thumbnail Image.png
Description

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf planet-class Kuiper belt objects (KBOs). We first review the likely spatial and temporal extent of subsurface liquid, proposed mechanisms to overcome the negative buoyancy of liquid water in ice, and the volatile inventory of KBOs. We then present a new geochemical equilibrium model for volatile exsolution and its ability to drive upward crack propagation. This novel approach bridges geophysics and geochemistry, and extends geochemical modeling to the seldom-explored realm of liquid water at subzero temperatures. We show that carbon monoxide (CO) is a key volatile for gas-driven fluid ascent; whereas CO2 and sulfur gases only play a minor role. N2, CH4, and H2 exsolution may also drive explosive cryovolcanism if hydrothermal activity produces these species in large amounts (a few percent with respect to water). Another important control on crack propagation is the internal structure: a hydrated core makes explosive cryovolcanism easier, but an undifferentiated crust does not. We briefly discuss other controls on ascent such as fluid freezing on crack walls, and outline theoretical advances necessary to better understand cryovolcanic processes. Finally, we make testable predictions for the 2015 New Horizons flyby of the Pluto-Charon system.

ContributorsNeveu, Marc (Author) / Desch, Steven (Author) / Shock, Everett (Author) / Glein, C. R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-15
129253-Thumbnail Image.png
Description

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy electron diffraction, x-ray diffraction, and high-resolution electron microscopy. In situ x-ray photoelectron spectroscopy was used to confirm the presence of the oxygen-deficient layer. Electrical characterization indicates sheet carrier densities of ∼1013 cm−2 at room temperature for the sample deposited at 700 °C, with a maximum electron Hall mobility of 3100 cm2V-1s-1 at 3.2 K and room temperature mobility of 22 cm2V-1s-1. Annealing in oxygen is found to reduce the carrier density and turn a conductive sample into an insulator.

ContributorsKormondy, Kristy J. (Author) / Posadas, Agham B. (Author) / Ngo, Thong Q. (Author) / Lu, Sirong (Author) / Goble, Nicholas (Author) / Jordan-Sweet, Jean (Author) / Gao, Xuan P. A. (Author) / Smith, David (Author) / McCartney, Martha (Author) / Ekerdt, John G. (Author) / Demkov, Alexander A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-07
129317-Thumbnail Image.png
Description

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

ContributorsPonath, Patrick (Author) / Fredrickson, Kurt (Author) / Posadas, Agham B. (Author) / Ren, Yuan (Author) / Wu, Xiaoyu (Author) / Vasudevan, Rama K. (Author) / Okatan, M. Baris (Author) / Jesse, S. (Author) / Aoki, Toshihiro (Author) / McCartney, Martha (Author) / Smith, David (Author) / Kalinin, Sergei V. (Author) / Lai, Keji (Author) / Demkov, Alexander A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129431-Thumbnail Image.png
Description

We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (∼90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains

We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (∼90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

ContributorsZhang, D. (Author) / Ray, N. M. (Author) / Petuskey, William (Author) / Smith, David (Author) / McCartney, Martha (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-28
129205-Thumbnail Image.png
Description

The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO3 (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001)

The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO3 (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001) surface is a necessary template to achieve crystalline films upon annealing. The SHO films exhibit excellent crystallinity, as shown by x-ray diffraction and transmission electron microscopy. The SHO films have favorable electronic properties for consideration as a high-k gate dielectric on Ge, with satisfactory band offsets (>2 eV), low leakage current (<10-5 A/cm2 at an applied field of 1 MV/cm) at an equivalent oxide thickness of 1 nm, and a reasonable dielectric constant (k ∼ 18). The interface trap density (Dit) is estimated to be as low as ∼2 × 1012 cm-2 eV-1 under the current growth and anneal conditions. Some interfacial reaction is observed between SHO and Ge at temperatures above ∼650 °C, which may contribute to increased Dit value. This study confirms the potential for crystalline oxides grown directly on Ge by atomic layer deposition for advanced electronic applications.

ContributorsMcDaniel, Martin D. (Author) / Hu, Chengqing (Author) / Lu, Sirong (Author) / Ngo, Thong Q. (Author) / Posadas, Agham (Author) / Jiang, Aiting (Author) / Smith, David (Author) / Yu, Edward T. (Author) / Demkov, Alexander A. (Author) / Ekerdt, John G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-07
129008-Thumbnail Image.png
Description

Background: Interaction in the form of cooperation, communication, and friendly competition theoretically precede the development of group cohesion, which often precedes adherence to health promotion programs. The purpose of this manuscript was to explore longitudinal relationships among dimensions of group cohesion and group-interaction variables to inform and improve group-based strategies within

Background: Interaction in the form of cooperation, communication, and friendly competition theoretically precede the development of group cohesion, which often precedes adherence to health promotion programs. The purpose of this manuscript was to explore longitudinal relationships among dimensions of group cohesion and group-interaction variables to inform and improve group-based strategies within programs aimed at promoting physical activity.

Methods: Ethnic minority women completed a group dynamics-based physical activity promotion intervention (N = 103; 73% African American; 27% Hispanic/Latina; mage = 47.89 + 8.17 years; mBMI = 34.43+ 8.07 kg/m[superscript 2]) and assessments of group cohesion and group-interaction variables at baseline, 6 months (post-program), and 12 months (follow-up).

Results: All four dimensions of group cohesion had significant (ps < 0.01) relationships with the group-interaction variables. Competition was a consistently strong predictor of cohesion, while cooperation did not demonstrate consistent patterns of prediction.

Conclusions: Facilitating a sense of friendly competition may increase engagement in physical activity programs by bolstering group cohesion.

Created2014-04-09
128971-Thumbnail Image.png
Description

Background: Latino preschoolers (3-5 year old children) have among the highest rates of obesity. Low levels of physical activity (PA) are a risk factor for obesity. Characterizing what Latino parents do to encourage or discourage their preschooler to be physically active can help inform interventions to increase their PA. The objective

Background: Latino preschoolers (3-5 year old children) have among the highest rates of obesity. Low levels of physical activity (PA) are a risk factor for obesity. Characterizing what Latino parents do to encourage or discourage their preschooler to be physically active can help inform interventions to increase their PA. The objective was therefore to develop and assess the psychometrics of a new instrument: the Preschooler Physical Activity Parenting Practices (PPAPP) among a Latino sample, to assess parenting practices used to encourage or discourage PA among preschool-aged children.

Methods: Cross-sectional study of 240 Latino parents who reported the frequency of using PA parenting practices. 95% of respondents were mothers; 42% had more than a high school education. Child mean age was 4.5 (±0.9) years (52% male). Test-retest reliability was assessed in 20%, 2 weeks later. We assessed the fit of a priori models using Confirmatory factor analyses (CFA). In a separate sub-sample (35%), preschool-aged children wore accelerometers to assess associations with their PA and PPAPP subscales.

Results: The a-priori models showed poor fit to the data. A modified factor structure for encouraging PPAPP had one multiple-item scale: engagement (15 items), and two single-items (have outdoor toys; not enroll in sport-reverse coded). The final factor structure for discouraging PPAPP had 4 subscales: promote inactive transport (3 items), promote screen time (3 items), psychological control (4 items) and restricting for safety (4 items). Test-retest reliability (ICC) for the two scales ranged from 0.56-0.85. Cronbach’s alphas ranged from 0.5-0.9. Several sub-factors correlated in the expected direction with children’s objectively measured PA.

Conclusion: The final models for encouraging and discouraging PPAPP had moderate to good fit, with moderate to excellent test-retest reliabilities. The PPAPP should be further evaluated to better assess its associations with children’s PA and offers a new tool for measuring PPAPP among Latino families with preschool-aged children.

Created2014-01-15
128977-Thumbnail Image.png
Description

Background: To combat the disproportionately higher risk of childhood obesity in Latino preschool-aged children, multilevel interventions targeting physical (in) activity are needed. These require the identification of environmental and psychosocial determinants of physical (in) activity for this ethnic group. The objectives were to examine differences in objectively-measured physical activity and sedentary

Background: To combat the disproportionately higher risk of childhood obesity in Latino preschool-aged children, multilevel interventions targeting physical (in) activity are needed. These require the identification of environmental and psychosocial determinants of physical (in) activity for this ethnic group. The objectives were to examine differences in objectively-measured physical activity and sedentary behavior across objectively-determined types of locations in Latino preschool-aged children; and determine whether the differences in physical activity by location were greater in children of parents with higher neighborhood-safety perceptions and physical activity-supportive parenting practices.

Methods: An observational field study was conducted in Houston (Texas, USA) from August 2011 to April 2012. A purposive sample of Latino children aged 3–5 years and one of their parents (n = 84) were recruited from Census block groups in Houston (Texas) stratified by objectively-assessed high vs. low traffic and crime safety. Seventy-three children provided valid data. Time spent outdoors/indoors tagged with geographic locations was coded into location types based on objective data collected using Global Positioning Systems units that children wore >8 hr/day for a week. Physical activity parenting practices, perceived neighborhood-safety, and demographics were reported by parents. Time spent in sedentary behavior and moderate-to-vigorous physical activity was measured based on objective data collected using accelerometers (motion sensors) that children wore >8 hr/day for a week.

Results: The odds of children engaging in moderate-to-vigorous physical activity were 43 % higher when outdoors than indoors (95 % confidence interval: 1.30, 1.58), and the odds of being sedentary were 14 % lower when outdoors compared to indoors (95 % confidence intervals: 0.81, 0.91). This difference depended on parental neighborhood-safety perceptions and parenting practices. Children were most active in parks/playgrounds (30 % of the time spent in moderate-to-vigorous physical activity) and least active in childcare/school settings (8 % of the time spent in moderate-to-vigorous physical activity).

Conclusions: Objectively-assessed time spent in specific locations is correlated with physical activity and sedentary behavior in Latino preschoolers. Interventions and policies should identify ways to engage Latino preschool-aged children in more physical activity and less sedentary behavior while in childcare, and encourage parents to spend more time with their young children in parks/playgrounds and other safe outdoor places.

Created2016-02-29
128979-Thumbnail Image.png
Description

The purpose of this review was to determine the degree to which physical activity interventions for Latin American populations reported on internal and external validity factors using the RE-AIM framework (reach & representativeness, effectiveness, adoption, implementation, maintenance). We systematically identified English (PubMed; EbscoHost) and Spanish (SCIELO; Biblioteca Virtual en Salud)

The purpose of this review was to determine the degree to which physical activity interventions for Latin American populations reported on internal and external validity factors using the RE-AIM framework (reach & representativeness, effectiveness, adoption, implementation, maintenance). We systematically identified English (PubMed; EbscoHost) and Spanish (SCIELO; Biblioteca Virtual en Salud) language studies published between 2001 and 2012 that tested physical activity, exercise, or fitness promotion interventions in Latin American populations. Cross-sectional/descriptive studies, conducted in Brazil or Spain, published in Portuguese, not including a physical activity/fitness/exercise outcome, and with one time point assessment were excluded. We reviewed 192 abstracts and identified 46 studies that met the eligibility criteria (34 in English, 12 in Spanish). A validated 21-item RE-AIM abstraction tool was used to determine the quality of reporting across studies (0-7 = low, 8-14 = moderate, and 15-21 = high). The number of indicators reported ranged from 3–14 (mean = 8.1 ± 2.6), with the majority of studies falling in the moderate quality reporting category. English and Spanish language articles did not differ on the number of indicators reported (8.1 vs. 8.3, respectively). However, Spanish articles reported more across reach indicators (62% vs. 43% of indicators), while English articles reported more across effectiveness indicators (69% vs 62%). Across RE-AIM dimensions, indicators for reach (48%), efficacy/effectiveness (67%), and implementation (41%) were reported more often than indicators of adoption (25%) and maintenance (10%). Few studies reported on the representativeness of participants, staff that delivered interventions, or the settings where interventions were adopted. Only 13% of the studies reported on quality of life and/or potential negative outcomes, 20% reported on intervention fidelity, and 11% on cost of implementation. Outcomes measured after six months of intervention, information on continued delivery and institutionalization of interventions, were also seldom reported. Regardless of language of publication, physical activity intervention research for Latin Americans should increase attention to and measurement of external validity and cost factors that are critical in the decision making process in practice settings and can increase the likelihood of translation into community or clinical practice.

Created2014-06-17