This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 30
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
129236-Thumbnail Image.png
Description

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its adverse impacts on human health and environmental quality. As PCE use is curtailed, effective alternatives must be analyzed for their toxicity and impacts to human health and the environment. Potential alternatives to PCE in dry cleaning include dipropylene glycol n-butyl ether (DPnB) and dipropylene glycol tert-butyl ether (DPtB), both promising to pose a relatively smaller risk. To evaluate these two alternatives to PCE, we established and scored performance criteria, including chemical toxicity, employee and customer exposure levels, impacts on the general population, costs of each system, and cleaning efficacy. The scores received for PCE were 5, 5, 3, 5, 3, and 3, respectively, and DPnB and DPtB scored 3, 1, 2, 2, 4, and 4, respectively. An aggregate sum of the performance criteria yielded a favorably low score of “16” for both DPnB and DPtB compared to “24” for PCE. We conclude that DPnB and DPtB are preferable dry cleaning agents, exhibiting reduced human toxicity and a lesser adverse impact on human health and the environment compared to PCE, with comparable capital investments, and moderately higher annual operating costs.

ContributorsHesari, Nikou (Author) / Francis, Chelsea (Author) / Halden, Rolf (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-04-03
129255-Thumbnail Image.png
Description

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in the United Kingdom. This critical review focuses on the effect of nZVI injection on subsurface microbial communities, which are of interest due to their important role in contaminant attenuation processes. Corrosion of ZVI stimulates dehalorespiring bacteria, due to the production of H2 that can serve as an electron donor for reduction of chlorinated contaminants. Conversely, laboratory studies show that nZVI can be inhibitory to pure bacterial cultures, although toxicity is reduced when nZVI is coated with polyelectrolytes or natural organic matter. The emerging toolkit of molecular biological analyses should enable a more sophisticated assessment of combined nZVI/biostimulation or bioaugmentation approaches. While further research on the consequences of its application for subsurface microbial communities is needed, nZVI continues to hold promise as an innovative technology for in situ remediation of pollutants It is particularly attractive. for the remediation of subsurface environments containing chlorinated ethenes because of its ability to potentially elicit and sustain both physical–chemical and biological removal despite its documented antimicrobial properties.

ContributorsBruton, Thomas (Author) / Pycke, Benny (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-06-03
129256-Thumbnail Image.png
Description

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as an effective method to reduce temperature and energy consumption in cities, its impacts on environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a set of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-07-01
129257-Thumbnail Image.png
Description

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we develop a stochastic algorithm to estimate view factors between canyon facets in the presence of shade trees based on Monte Carlo simulation, where an analytical formulation is inhibited by the complex geometry. The model is validated against analytical solutions of benchmark radiative problems as well as field measurements in real street canyons. In conjunction with the matrix method resolving infinite number of reflections, the proposed model is capable of predicting the radiative exchange inside the street canyon with good accuracy. Modeling of transient evolution of thermal filed inside the street canyon using the proposed method demonstrate the potential of shade trees in mitigating canyon surface temperatures as well as saving of building energy use. This new numerical framework also deepens our insight into the fundamental physics of radiative heat transfer and surface energy balance for urban climate modeling.

ContributorsWang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
129434-Thumbnail Image.png
Description

Aquaculture production has nearly tripled in the last two decades, bringing with it a significant increase in the use of antibiotics. Using liquid chromatography/tandem mass spectrometry (LC–MS/MS), the presence of 47 antibiotics was investigated in U.S. purchased shrimp, salmon, catfish, trout, tilapia, and swai originating from 11 different countries. All

Aquaculture production has nearly tripled in the last two decades, bringing with it a significant increase in the use of antibiotics. Using liquid chromatography/tandem mass spectrometry (LC–MS/MS), the presence of 47 antibiotics was investigated in U.S. purchased shrimp, salmon, catfish, trout, tilapia, and swai originating from 11 different countries. All samples (n = 27) complied with U.S. FDA regulations and five antibiotics were detected above the limits of detection: oxytetracycline (in wild shrimp, 7.7 ng/g of fresh weight; farmed tilapia, 2.7; farmed salmon, 8.6; farmed trout with spinal deformities, 3.9), 4-epioxytetracycline (farmed salmon, 4.1), sulfadimethoxine (farmed shrimp, 0.3), ormetoprim (farmed salmon, 0.5), and virginiamycin (farmed salmon marketed as antibiotic-free, 5.2). A literature review showed that sub-regulatory levels of antibiotics, as found here, can promote resistance development; publications linking aquaculture to this have increased more than 8-fold from 1991 to 2013. Although this study was limited in size and employed sample pooling, it represents the largest reconnaissance of antibiotics in U.S. seafood to date, providing data on previously unmonitored antibiotics and on farmed trout with spinal deformities. Results indicate low levels of antibiotic residues and general compliance with U.S. regulations. The potential for development of microbial drug resistance was identified as a key concern and research priority.

ContributorsDone, Hansa (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-01-23
129197-Thumbnail Image.png
Description

The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with

The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m(2)) of 41 +/- 6.1 kg/m(2)/y had water and energy demands of 20 +/- 3.8 L/kg/y and 90,000 +/- 11,000 kJ/kg/y (+/- standard deviation), respectively. In comparison, conventional production yielded 3.9 +/- 0.21 kg/m(2)/y of produce, with water and energy demands of 250 +/- 25 L/kg/y and 1100 +/- 75 kJ/kg/y, respectively. Hydroponics offered 11 +/- 1.7 times higher yields but required 82 +/- 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

ContributorsBarbosa, Guilherme Lages (Author) / Gadelha, Francisca Daiane Almeida (Author) / Kublik, Natalya (Author) / Proctor, Alan (Author) / Reichelm, Lucas (Author) / Weissinger, Emily (Author) / Wohlleb, Gregory (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-06-01
128967-Thumbnail Image.png
Description

Background: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic

Background: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2). We studied the effect of HCO3− as a buffering agent and the effect of HCO3−-consuming reactions in a range of concentrations (2.5-30 mM) with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens.

Results: Rate differences in TCE dechlorination were observed as a result of added varying HCO3− concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7) from biological HCO3− consumption. Significantly faster dechlorination rates were noted at all HCO3− concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3− concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3− were provided initially.

Conclusions: Our study reveals that HCO3− is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3− and the changes in pH exerted by methanogens and homoacetogens.

ContributorsDelgado, Anca (Author) / Parameswaran, Prathap (Author) / Fajardo-Williams, Devyn (Author) / Halden, Rolf (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2012-09-13
128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10
128290-Thumbnail Image.png
Description

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land cover-supported, atmospherically-corrected dynamic mixture model applied to 20+ years (1992–2013) of combined, daily, passive/active microwave remote sensing data. The resulting product, known as Surface Water Microwave Product Series (SWAMPS), shows strong microwave sensitivity to sub-grid scale open water and inundated wetlands comprising open plant canopies. SWAMPS’ FW compares favorably (R2 = 91%–94%) with higher-resolution, global-scale maps of open water from MODIS and SRTM-MOD44W. Correspondence of SWAMPS with open water and wetland products from satellite SAR in Alaska and the Amazon deteriorates when exposed wetlands or inundated forests captured by the SAR products were added to the open water fraction reflecting SWAMPS’ inability to detect water underneath the soil surface or beneath closed forest canopies. Except for a brief period of drying during the first 4 years of observation, the inundation extent for the global domain excluding the coast was largely stable. Regionally, inundation in North America is advancing while inundation is on the retreat in Tropical Africa and North Eurasia. SWAMPS provides a consistent and long-term global record of daily FW dynamics, with documented accuracies suitable for hydrologic assessment and global change-related investigations.

ContributorsSchroeder, Ronny (Author) / McDonald, Kyle C. (Author) / Chapman, Bruce D. (Author) / Jensen, Katherine (Author) / Podest, Erika (Author) / Tessler, Zachary D. (Author) / Bohn, Theodore (Author) / Zimmermann, Reiner (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-12-09