This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 66
Filtering by

Clear all filters

189603-Thumbnail Image.png
Description

Recently the domestic aviation industry has been influenced by rapidly growing ultra low-cost carriers (ULCCs). The pattern of airport markets served by ULCCs is incongruous with legacy carriers and low-cost airlines alike. Existing literature, however, is limited for North American ULCCs: research has only recently begun to identify them separately

Recently the domestic aviation industry has been influenced by rapidly growing ultra low-cost carriers (ULCCs). The pattern of airport markets served by ULCCs is incongruous with legacy carriers and low-cost airlines alike. Existing literature, however, is limited for North American ULCCs: research has only recently begun to identify them separately from mainstream low-cost carriers. This study sought to understand the market factors that influence ULCC service decisions. The relationship between ULCC operations and airport market factors was analyzed using three methods: mapping 2019 flight data for four ULCCs combined, two regression analyses to evaluate variables, and three case studies examining distinct scenarios through interviews with airport managers. Enplanement data were assembled for every domestic airport offering scheduled service in 2019. Independent variables were collected for each Part 139 airport. The first model estimated an ordinary least squares regression model to analyze ULCC enplanements. The second model estimated a binary logistic equation for presence of ULCC service. Case studies for Bellingham, Waco, and Lincoln were selected using compelling airport factors and relevant ULCC experience. Maps of ULCC enplanements revealed concentrations of operations on the East Coast. Both regression analyses showed strong relationships between population and non-ULCC enplanements (two measures of airport market size) and ULCC operations. A significant relationship also existed between tourism and enplanements. In the logit model, distance and competition variables were associated with ULCC presence. Case studies emphasized the importance of airport fees and competition in ULCC preferences, although aeronautical costs were generally not significant in the regressions.

ContributorsTaplin, Drew (Author) / Kuby, Michael (Author) / Salon, Deborah (Author) / King, David A. (Author)
Created2023-01-31
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
190-Thumbnail Image.png
Description

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a critical question is whether these experiences will result in changed behaviors and preferences in the long term. This paper presents initial findings on the likelihood of long-term changes in telework, daily travel, restaurant patronage, and air travel based on survey data collected from adults in the United States in Spring 2020. These data suggest that a sizable fraction of the increase in telework and decreases in both business air travel and restaurant patronage are likely here to stay. As for daily travel modes, public transit may not fully recover its pre-pandemic ridership levels, but many of our respondents are planning to bike and walk more than they used to. These data reflect the responses of a sample that is higher income and more highly educated than the US population. The response of these particular groups to the COVID-19 pandemic is perhaps especially important to understand, however, because their consumption patterns give them a large influence on many sectors of the economy.

Created2020-09-03
129552-Thumbnail Image.png
Description

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80 °C, −20 °C, and room temperature and exposed to multiple freeze-thaw cycles and other adverse conditions in order to assess the possibility that protein oxidation may occur as a result of poor sample storage or handling. Samples from a healthy donor and a participant with poorly controlled type 2 diabetes started at the same low level of protein oxidation and behaved similarly; significant increases in albumin oxidation via S-cysteinylation were found to occur within hours at room temperature and days at −20 °C. Methionine oxidation of apoA-I took place on a longer time scale, setting in after albumin oxidation reached a plateau. Freeze–thaw cycles had a minimal effect on protein oxidation. In matched collections, protein oxidation in serum was the same as that in plasma. Albumin and apoA-I oxidation were not affected by sample headspace or the degree to which vials were sealed. ApoA-I, however, was unexpectedly found to oxidize faster in samples with lower surface-area-to-volume ratios. An initial survey of samples from patients with inflammatory conditions normally associated with elevated oxidative stress-including acute myocardial infarction and prostate cancer—demonstrated a lack of detectable apoA-I oxidation. Albumin S-cysteinylation in these samples was consistent with known but relatively brief exposures to temperatures above −30 °C (the freezing point of blood plasma). Given their properties and ease of analysis, these oxidized proteoforms, once fully validated, may represent the first markers of blood plasma specimen integrity based on direct measurement of oxidative molecular damage that can occur under suboptimal storage conditions.

ContributorsBorges, Chad (Author) / Rehder, Douglas (Author) / Jensen, Sally (Author) / Schaab, Matthew (Author) / Sherma, Nisha (Author) / Yassine, Hussein (Author) / Nikolova, Boriana (Author) / Breburda, Christian (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
129558-Thumbnail Image.png
Description

In recent years, a substantial amount of research has been focused on identifying suitable interfacial layers in organic light-emitting diodes and organic solar cells which has efficient charge transport properties. In this work, a very thin layer of AgOx is deposited on top of the ITO layer along with PEDOT:PSS

In recent years, a substantial amount of research has been focused on identifying suitable interfacial layers in organic light-emitting diodes and organic solar cells which has efficient charge transport properties. In this work, a very thin layer of AgOx is deposited on top of the ITO layer along with PEDOT:PSS and is observed that the solar cells having the AgOx interfacial layer showed a 28% increase in power conversion efficiency in comparison to that of the control cell. The enhancement in efficiency has been ascribed to improvements in fill factor as well as the increase in shunt resistance and decrease in the series resistance of the solar cells. An equivalent circuit model is also provided to understand the changes in the series and shunt resistances in the AgOx modified devices.

ContributorsDas, Sayantan (Author) / Alford, Terry (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-28
129578-Thumbnail Image.png
Description

Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed

Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore’s electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein–Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar–polarizable chromophore dissolved in a force field water.

Created2014-07-17
Description

Sliding clamps are ring-shaped oligomeric proteins that are essential for processive deoxyribonucleic acid replication. Although crystallographic structures of several clamps have been determined, much less is known about clamp structure and dynamics in solution. Here, we characterized the intrinsic solution stability and oligomerization dynamics of the homodimeric Escherichia coli β

Sliding clamps are ring-shaped oligomeric proteins that are essential for processive deoxyribonucleic acid replication. Although crystallographic structures of several clamps have been determined, much less is known about clamp structure and dynamics in solution. Here, we characterized the intrinsic solution stability and oligomerization dynamics of the homodimeric Escherichia coli β and the homotrimeric Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) clamps using single-molecule approaches. We show that E. coli β is stable in solution as a closed ring at concentrations three orders of magnitude lower than PCNA. The trimeric structure of PCNA results in slow subunit association rates and is largely responsible for the lower solution stability. Despite this large difference, the intrinsic lifetimes of the rings differ by only one order of magnitude. Our results show that the longer lifetime of the E. coli β dimer is due to more prominent electrostatic interactions that stabilize the subunit interfaces.

ContributorsBinder, Jennifer (Author) / Douma, Lauren G. (Author) / Ranjit, Suman (Author) / Kanno, David (Author) / Chakraborty, Manas (Author) / Bloom, Linda B. (Author) / Levitus, Marcia (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2013-11-30
129515-Thumbnail Image.png
Description

The dopamine-TiO2 system shows a specific spectroscopic response, surface enhanced Raman scattering (SERS), whose mechanism is not fully understood. In this study, the goal is to reveal the key role of the molecule–nanoparticle interface in the electronic structure by means of ab initio modeling. The dopamine adsorption energy on anatase

The dopamine-TiO2 system shows a specific spectroscopic response, surface enhanced Raman scattering (SERS), whose mechanism is not fully understood. In this study, the goal is to reveal the key role of the molecule–nanoparticle interface in the electronic structure by means of ab initio modeling. The dopamine adsorption energy on anatase surfaces is computed and related to changes in the electronic structure. Two features are observed: the appearance of a state in the material band gap, and charge transfer between molecule and surface upon electronic excitation. The analysis of the energetics of the systems would point to a selective adsorption of dopamine on the (001) and (100) terminations, with much less affinity for the (101) plane.

ContributorsUrdaneta, I. (Author) / Keller, A. (Author) / Atabek, O. (Author) / Palma, Julio (Author) / Finkelstein-Shapiro, Daniel (Author) / Pilarisetty, Tarakeshwar (Author) / Mujica, Vladimiro (Author) / Calatayud, M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-04
129516-Thumbnail Image.png
Description

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered and broken up by the impact. Dark fans on crater walls and dark deposits on crater floors are the result of gravity-driven mass wasting triggered by steep slopes and impact seismicity. The fact that dark material is mixed with impact ejecta indicates that it has been processed together with the ejected material. Some small craters display continuous dark ejecta similar to lunar dark-halo impact craters, indicating that the impact excavated the material from beneath a higher-albedo surface. The asymmetric distribution of dark material in impact craters and ejecta suggests non-continuous distribution in the local subsurface. Some positive-relief dark edifices appear to be impact-sculpted hills with dark material distributed over the hill slopes.

Dark features inside and outside of craters are in some places arranged as linear outcrops along scarps or as dark streaks perpendicular to the local topography. The spectral characteristics of the dark material resemble that of Vesta’s regolith. Dark material is distributed unevenly across Vesta’s surface with clusters of all types of dark material exposures. On a local scale, some craters expose or are associated with dark material, while others in the immediate vicinity do not show evidence for dark material. While the variety of surface exposures of dark material and their different geological correlations with surface features, as well as their uneven distribution, indicate a globally inhomogeneous distribution in the subsurface, the dark material seems to be correlated with the rim and ejecta of the older Veneneia south polar basin structure. The origin of the dark material is still being debated, however, the geological analysis suggests that it is exogenic, from carbon-rich low-velocity impactors, rather than endogenic, from freshly exposed mafic material or melt, exposed or created by impacts.

ContributorsJaumann, R. (Author) / Nass, A. (Author) / Otto, K. (Author) / Krohn, K. (Author) / Stephan, K. (Author) / McCord, T. B. (Author) / Williams, David (Author) / Raymond, C. A. (Author) / Blewett, D. T. (Author) / Hiesinger, H. (Author) / Yingst, R. A. (Author) / De Sanctis, M. C. (Author) / Palomba, E. (Author) / Roatsch, T. (Author) / Matz, K-D. (Author) / Preusker, F. (Author) / Scholten, F. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-15
129517-Thumbnail Image.png
Description

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P2 [bdt = benzene-1,2-dithiolate; P2 = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fed) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies,

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P2 [bdt = benzene-1,2-dithiolate; P2 = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fed) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies, the two complexes have different coordination geometries. In X-ray crystal structures, the iron center of 1 is in a distorted trigonal bipyramidal arrangement, and that of 2 is in a distorted square pyramidal geometry. Electrochemical investigation shows that both complexes catalyze electrochemical proton reduction from acetic acid at mild overpotential, 0.17 and 0.38 V for 1 and 2, respectively. Although coordinatively unsaturated, the complexes display only weak, reversible binding affinity toward CO (1 bar). However, ligand centered protonation by the strong acid, HBF4·OEt2, triggers quantitative CO uptake by 1 to form a dicarbonyl analogue [1(H)-CO]+ that can be reversibly converted back to 1 by deprotonation using NEt3. Both crystallographically determined distances within the bdt ligand and density functional theory calculations suggest that the iron centers in both 1 and 2 are partially reduced at the expense of partial oxidation of the bdt ligand. Ligand protonation interrupts this extensive electronic delocalization between the Fe and bdt making 1(H)+ susceptible to external CO binding.

ContributorsRoy, Souvik (Author) / Mazinani, Shobeir Khezr Seddigh (Author) / Groy, Thomas (Author) / Gan, Lu (Author) / Pilarisetty, Tarakeshwar (Author) / Mujica, Vladimiro (Author) / Jones, Anne (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-01