This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 27 of 27
Filtering by

Clear all filters

127963-Thumbnail Image.png
Description

Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity

Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370 individual mammals representing three genera and eight species were captured in 4,800 trap nights from winter 2011 to spring 2012.

A multi-response permutation procedure was used to identify differences in small mammal community abundance and biomass by season and treatment. Rodent abundance, biomass, and richness were greater at AWS compared to control sites. Patterns of abundance and biomass were driven by the desert pocket mouse (Chaetodipus penicillatus) which was the most common capture and two times more numerous at AWS compared to controls. Vegetation characteristics, explored using principal components analysis, were similar between AWS and controls. Two species that prefer vegetation structure, Bailey’s pocket mouse (C. baileyi) and white-throated woodrat (Neotoma albigula), had greater abundances and biomass near AWS and were associated with habitat having high cactus density. Although small mammals do not drink free-water, perhaps higher abundances of some species of desert rodents at AWS could be related to artificial structure associated with construction or other resources. Compared to the 30-year average of precipitation for the area, the period of our study occurred during a dry winter. During dry periods, perhaps AWS provide resources to rodents related to moisture.

ContributorsSwitalski, Aaron (Author) / Bateman, Heather (Author) / College of Integrative Sciences and Arts (Contributor)
Created2017-11-10
128625-Thumbnail Image.png
Description

A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of

A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of rarity-weighted richness (HRR)–sites that efficiently represent species–for birds across EU countries, and to explore whether HRR are well represented by the Natura 2000 network. Natura 2000 is an evolving network of PAs that seeks to conserve biodiversity through the persistence of the most patrimonial species and habitats across Europe. This network includes Sites of Community Importance (SCI) and Special Areas of Conservation (SAC), where the latter regulated the designation of Special Protected Areas (SPA). Distribution maps for 416 bird species and complementarity-based approaches were used to map geographical patterns of rarity-weighted richness (RWR) and HRR for birds. We used species accumulation index to evaluate whether RWR was efficient surrogates to identify HRRs for birds. The results of our analysis support the proposition that prioritizing sites in order of RWR is a reliable way to identify sites that efficiently represent birds. HRRs were concentrated in the Mediterranean Basin and alpine and boreal biogeographical regions of northern Europe. The cells with high RWR values did not correspond to cells where Natura 2000 was present. We suggest that patterns of RWR could become a focus for conservation biogeography. Our analysis demonstrates that identifying HRR is a robust approach for prioritizing management actions, and reveals the need for more conservation actions, especially on HRR.

Created2017-04-05
128506-Thumbnail Image.png
Description

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent,

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent, orographic precipitation adjustment over Mexico and parts of Canada, and reduction of transboundary discontinuities. The impacts of adjusting gridded precipitation for orographic effects are quantified by scaling precipitation to an elevation-aware 1981-2010 precipitation climatology in Mexico and Canada. Differences are evaluated in terms of total precipitation as well as by hydrologic quantities simulated with a land surface model. Overall, orographic correction impacts total precipitation by up to 50% in mountainous regions outside CONUS. Hydrologic fluxes show sensitivities of similar magnitude, with discharge more sensitive than evapotranspiration and soil moisture. Because of the consistent gridding methodology, the current product reduces transboundary discontinuities as compared with a commonly used reanalysis product, making it suitable for estimating large-scale hydrometeorologic phenomena.

ContributorsLivneh, Ben (Author) / Bohn, Theodore (Author) / Pierce, David W. (Author) / Munoz-Arriola, Francisco (Author) / Nijssen, Bart (Author) / Vose, Russell (Author) / Cayan, Daniel R. (Author) / Brekke, Levi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-18
129092-Thumbnail Image.png
Description

One argument used by detractors of human embryonic stem cell research (hESCR) invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should

One argument used by detractors of human embryonic stem cell research (hESCR) invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should not be disaggregated to obtain pluripotent stem cells for hESCR. Given that human embryos are Kantian persons from the time of their conception, killing them to obtain their cells for research fails to treat them as ends in themselves.

This argument assumes two points that are rather contentious given a Kantian framework. First, the argument assumes that when Kant maintains that humanity must be treated as an end in itself, he means to argue that all members of the species Homo sapiens must be treated as ends in themselves; that is, that Kant regards personhood as co-extensive with belonging to the species Homo sapiens. Second, the argument assumes that the event of conception is causally responsible for the genesis of a Kantian person and that, therefore, an embryo is a Kantian person from the time of its conception.

In this paper, I will present challenges against these two assumptions by engaging in an exegetical study of some of Kant's works. First, I will illustrate that Kant did not use the term "humanity" to denote a biological species, but rather the capacity to set ends according to reason. Second, I will illustrate that it is difficult given a Kantian framework to denote conception (indeed any biological event) as causally responsible for the creation of a person. Kant ascribed to a dualistic view of human agency, and personhood, according to him, was derived from the supersensible capacity for reason. To argue that a Kantian person is generated due to the event of conception ignores Kant's insistence in various aspects of his work that it is not possible to understand the generation of a person qua a physical operation. Finally, I will end the paper by drawing from Allen Wood's work in Kantian philosophy in order to generate an argument in favor of hESCR.

ContributorsManning, Bertha (Author) / College of Integrative Sciences and Arts (Contributor)
Created2008-01-31
128223-Thumbnail Image.png
Description

Since nitrogen (N) is often limiting in permafrost soils, we investigated the N[subscript 2]-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were

Since nitrogen (N) is often limiting in permafrost soils, we investigated the N[subscript 2]-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlated to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group III nifH-harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N[subscript 2]-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites.

ContributorsPenton, Christopher (Author) / Yang, Caiyun (Author) / Wu, Liyou (Author) / Wang, Qiong (Author) / Zhang, Jin (Author) / Liu, Feifei (Author) / Qin, Yujia (Author) / Deng, Ye (Author) / Hemme, Christopher L. (Author) / Zheng, Tianling (Author) / Schuur, Edward A. G. (Author) / Tiedje, James (Author) / Zhou, Jizhong (Author) / College of Integrative Sciences and Arts (Contributor)
Created2016-11-24
128149-Thumbnail Image.png
Description

Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced

Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr-1), inversions (6.06 ± 1.22 Tg CH4 yr-1), and in situ observations (3.91 ± 1.29 Tg CH4 yr-1) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air temperature), unlike those of inversions and more sophisticated forward models; (d) differences in biogeochemical schemes across models had relatively smaller influence over performance; and (e) multiyear or multidecade observational records are crucial for evaluating models' responses to long-term climate change.

ContributorsBohn, Theodore (Author) / Melton, J. R. (Author) / Ito, A. (Author) / Kleinen, T. (Author) / Spahni, R. (Author) / Stocker, B. D. (Author) / Zhang, B. (Author) / Zhu, X. (Author) / Schroeder, R. (Author) / Glagolev, M. V. (Author) / Maksyutov, S. (Author) / Brovkin, V. (Author) / Chen, G. (Author) / Denisov, S. N. (Author) / Eliseev, A. V. (Author) / Gallego-Sala, A. (Author) / McDonald, K. C. (Author) / Rawlins, M. A. (Author) / Riley, W. J. (Author) / Subin, Z. M. (Author) / Tian, H. (Author) / Zhuang, Q. (Author) / Kaplan, J. O. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-03
128234-Thumbnail Image.png
Description

Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH4) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors on northern high-latitude wetland CH4 emissions using an enhanced version of the Variable

Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH4) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors on northern high-latitude wetland CH4 emissions using an enhanced version of the Variable Infiltration Capacity (VIC) land surface model. We simulated CH4 emissions from wetlands across the pan-Arctic domain over the period 1948–2006, yielding annual average emissions of 36.1 ± 6.7 Tg CH4 yr-1 for the period 1997–2006. We characterized historical sensitivities of CH4 emissions to air temperature, precipitation, incident long- and shortwave radiation, and atmospheric [CO2] as a function of average summer air temperature and precipitation. Emissions from relatively warm and dry wetlands in the southern (permafrost-free) portion of the domain were positively correlated with precipitation and negatively correlated with air temperature, while emissions from wetter and colder wetlands further north (permafrost) were positively correlated with air temperature. Over the entire period 1948–2006, our reconstructed CH4 emissions increased by 20 %, the majority of which can be attributed to an increasing trend in summer air temperature. We estimated future emissions in response to 21st century warming as predicted by CMIP5 (Coupled Model Intercomparison Project Phase 5) model projections to result in end-of-century CH4 emissions 38–53 % higher than our reconstructed 1997–2006 emissions, accompanied by the northward migration of warmer and drier than optimal conditions for CH4 emissions, implying a reduced role for temperature in driving future increases in emissions.

ContributorsChen, X. (Author) / Bohn, Theodore (Author) / Lettenmaier, D. P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-11-02