This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 197
Filtering by

Clear all filters

141465-Thumbnail Image.png
Description

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children with ASD, and significantly worsen their behavior and their quality of life. Here we first summarize previously published data supporting that GI dysfunction is common in individuals with ASD and the role of the microbiota in ASD. Second, by comparing with other publically available microbiome datasets, we provide some evidence that the shifted microbiota can be a result of westernization and that this shift could also be framing an altered immune system. Third, we explore the possibility that gut–brain interactions could also be a direct result of microbially produced metabolites.

ContributorsKrajmalnik-Brown, Rosa (Author) / Lozupone, Catherine (Author) / Kang, Dae Wook (Author) / Adams, James (Author) / Biodesign Institute (Contributor)
Created2015-03-12
141484-Thumbnail Image.png
Description

Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults

Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

ContributorsHruschka, Daniel (Author) / Hadley, Craig (Author) / Brewis, Alexandra (Author) / Stojanowski, Christopher (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-27
141489-Thumbnail Image.png
Description

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children with ASD often suffer gastrointestinal (GI) problems that correlate with ASD severity. Several previous studies have reported abnormal gut bacteria in children with ASD. The gut microbiome-ASD connection has been tested in a mouse model of ASD, where the microbiome was mechanistically linked to abnormal metabolites and behavior. Similarly, a study of children with ASD found that oral non-absorbable antibiotic treatment improved GI and ASD symptoms, albeit temporarily. Here, a small open-label clinical trial evaluated the impact of Microbiota Transfer Therapy (MTT) on gut microbiota composition and GI and ASD symptoms of 18 ASD-diagnosed children.

Results: MTT involved a 2-week antibiotic treatment, a bowel cleanse, and then an extended fecal microbiota transplant (FMT) using a high initial dose followed by daily and lower maintenance doses for 7–8 weeks. The Gastrointestinal Symptom Rating Scale revealed an approximately 80% reduction of GI symptoms at the end of treatment, including significant improvements in symptoms of constipation, diarrhea, indigestion, and abdominal pain. Improvements persisted 8 weeks after treatment. Similarly, clinical assessments showed that behavioral ASD symptoms improved significantly and remained improved 8 weeks after treatment ended. Bacterial and phage deep sequencing analyses revealed successful partial engraftment of donor microbiota and beneficial changes in the gut environment. Specifically, overall bacterial diversity and the abundance of Bifidobacterium, Prevotella, and Desulfovibrio among other taxa increased following MTT, and these changes persisted after treatment stopped (followed for 8 weeks).

Conclusions: This exploratory, extended-duration treatment protocol thus appears to be a promising approach to alter the gut microbiome and virome and improve GI and behavioral symptoms of ASD. Improvements in GI symptoms, ASD symptoms, and the microbiome all persisted for at least 8 weeks after treatment ended, suggesting a long-term impact.

ContributorsKang, Dae Wook (Author) / Adams, James (Author) / Gregory, Ann C. (Author) / Borody, Thomas (Author) / Chittick, Lauren (Author) / Fasano, Alessio (Author) / Khoruts, Alexander (Author) / Geis, Elizabeth (Author) / Maldonado Ortiz, Juan (Author) / McDonough-Means, Sharon (Author) / Pollard, Elena (Author) / Roux, Simon (Author) / Sadowsky, Michael J. (Author) / Schwarzberg Lipson, Karen (Author) / Sullivan, Matthew B. (Author) / Caporaso, J. Gregory (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2017-01-23
141490-Thumbnail Image.png
Description

Background: The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the recruitment,

Background: The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the recruitment, data collection, and data analytic protocols for the SPARC (Social impact of Physical Activity and nutRition in College) study, a longitudinal examination of the mechanisms by which friends and friendship networks influence nutrition and physical activity behaviors and weight gain in the transition to college life.

Methods: The SPARC study aims to follow 1450 university freshmen from a large university over an academic year, collecting data on multiple aspects of friends and friendship networks. Integrating multiple types of data related to student lives, ecological momentary assessments (EMAs) are administered via a cell phone application, devilSPARC. EMAs collected in four 1-week periods (a total of 4 EMA waves) are integrated with linked data from web-based surveys and anthropometric measurements conducted at four times points (for a total of eight data collection periods including EMAs, separated by ~1 month). University databases will provide student card data, allowing integration of both time-dated data on food purchasing, use of physical activity venues, and geographical information system (GIS) locations of these activities relative to other students in their social networks.

Discussion: Findings are intended to guide the development of more effective interventions to enhance behaviors among college students that protect against weight gain during college.

ContributorsBruening, Meg (Author) / Ohri-Vachaspati, Punam (Author) / Brewis, Alexandra (Author) / Laska, Melissa (Author) / Todd, Michael (Author) / Hruschka, Daniel (Author) / Schaefer, David (Author) / Whisner, Corrie (Author) / Dunton, Genevieve (Author) / College of Health Solutions (Contributor)
Created2016-08-30
141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03
129035-Thumbnail Image.png
Description

Background: Considering the distinct biological characteristics of Plasmodium species is crucial for control and elimination efforts, in particular when facing the spread of drug resistance. Whereas the evolutionary fitness of all malarial species could be approximated by the probability of being taken by a mosquito and then infecting a new host,

Background: Considering the distinct biological characteristics of Plasmodium species is crucial for control and elimination efforts, in particular when facing the spread of drug resistance. Whereas the evolutionary fitness of all malarial species could be approximated by the probability of being taken by a mosquito and then infecting a new host, the actual steps in the malaria life cycle leading to a successful transmission event show differences among Plasmodium species. These “steps” are called fitness components. Differences in terms of fitness components may affect how selection imposed by interventions, e.g. drug treatments, differentially acts on each Plasmodium species. Thus, a successful malaria control or elimination programme should understand how differences in fitness components among different malaria species could affect adaptive evolution (e.g. the emergence of drug resistance). In this investigation, the interactions between some fitness components and natural selection are explored.

Methods: A population-genetic model is formulated that qualitatively explains how different fitness components (in particular gametocytogenesis and longevity of gametocytes) affect selection acting on merozoites during the erythrocytic cycle. By comparing Plasmodium falciparum and Plasmodium vivax, the interplay of parasitaemia and gametocytaemia dynamics in determining fitness is modelled under circumstances that allow contrasting solely the differences between these two parasites in terms of their fitness components.

Results: By simulating fitness components, it is shown that selection acting on merozoites (e.g., on drug resistant mutations or malaria antigens) is more efficient in P. falciparum than in P. vivax. These results could explain, at least in part, why resistance against drugs, such as chloroquine (CQ) is highly prevalent in P. falciparum worldwide, while CQ is still a successful treatment for P. vivax despite its massive use. Furthermore, these analyses are used to explore the importance of understanding the dynamic of gametocytaemia to ascertain the spreading of drug resistance.

Conclusions: The strength of natural selection on mutations that express their advantage at the merozoite stage is different in P. vivax and P. falciparum. Species-specific differences in gametocytogenesis and longevity of gametocytes need to be accounted for when designing effective malaria control and elimination programmes. There is a need for reliable data on gametocytogenesis from field studies.

ContributorsSchneider, Kristan A. (Author) / Escalante, Ananias (Author) / Biodesign Institute (Contributor)
Created2013-01-11
128260-Thumbnail Image.png
Description

Lineage-committed cells of many tissues exhibit substantial plasticity in contexts such as wound healing and tumorigenesis, but the regulation of this process is not well understood. We identified the Hippo transducer WWTR1/TAZ in a screen of transcription factors that are able to prompt lineage switching of mammary epithelial cells. Forced

Lineage-committed cells of many tissues exhibit substantial plasticity in contexts such as wound healing and tumorigenesis, but the regulation of this process is not well understood. We identified the Hippo transducer WWTR1/TAZ in a screen of transcription factors that are able to prompt lineage switching of mammary epithelial cells. Forced expression of TAZ in luminal cells induces them to adopt basal characteristics, and depletion of TAZ in basal and/or myoepithelial cells leads to luminal differentiation. In human and mouse tissues, TAZ is active only in basal cells and is critical for basal cell maintenance during homeostasis. Accordingly, loss of TAZ affects mammary gland development, leading to an imbalance of luminal and basal populations as well as branching defects. Mechanistically, TAZ interacts with components of the SWI/SNF complex to modulate lineage-specific gene expression. Collectively, these findings uncover a new role for Hippo signaling in the determination of lineage identity through recruitment of chromatin-remodeling complexes.

ContributorsSkibinski, Adam (Author) / Breindel, Jerrica L. (Author) / Prat, Aleix (Author) / Galvan, Patricia (Author) / Smith, Elizabeth (Author) / Rolfs, Andreas (Author) / Gupta, Piyush B. (Author) / LaBaer, Joshua (Author) / Kuperwasser, Charlotte (Author) / Biodesign Institute (Contributor)
Created2014-03-27
128250-Thumbnail Image.png
Description

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here we demonstrate a quantitative binding kinetics analysis of drug-target interactions to investigate the molecular scale origin of drug resistance. Using a surface plasmon resonance imaging, we measured the in situ Herceptin-Her2 binding kinetics in single intact cancer cells for the first time, and observed significantly weakened Herceptin-Her2 interactions in Herceptin-resistant cells, compared to those in Herceptin-sensitive cells. We further showed that the steric hindrance of Mucin-4, a membrane protein, was responsible for the altered drug-receptor binding. This effect of a third molecule on drug-receptor interactions cannot be studied using traditional purified protein methods, demonstrating the importance of the present intact cell-based binding kinetics analysis.

ContributorsWang, Wei (Author) / Yin, Linliang (Author) / Gonzalez-Malerva, Laura (Author) / Wang, Shaopeng (Author) / Yu, Xiaobo (Author) / Eaton, Seron (Author) / Zhang, Shengtao (Author) / Chen, Hong-Yuan (Author) / LaBaer, Joshua (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2014-10-14
128170-Thumbnail Image.png
Description

Background: Computed tomography (CT) is one of the popular tools for early detection of thyroid nodule. The pixel intensity of thyroid in CT image is very important information to distinguish nodule from normal thyroid tissue. The pixel intensity in normal thyroid tissues is homogeneous and smooth. In the benign or malignant

Background: Computed tomography (CT) is one of the popular tools for early detection of thyroid nodule. The pixel intensity of thyroid in CT image is very important information to distinguish nodule from normal thyroid tissue. The pixel intensity in normal thyroid tissues is homogeneous and smooth. In the benign or malignant nodules, the pixel intensity is heterogeneous. Several studies have shown that the first order features in ultrasound image can be used as imaging biomarkers in nodule recognition.

Methods: In this paper, we investigate the feasibility of utilizing the first order texture features to identify nodule from normal thyroid tissue in CT image. A total of 284 thyroid CT images from 113 patients were collected in this study. We used 150 healthy controlled thyroid CT images from 55 patients and 134 nodule images (50 malignant and 84 benign nodules) from 58 patients who have undergone thyroid surgery. The final diagnosis was confirmed by histopathological examinations. In the presented method, first, regions of interest (ROIs) from axial non-enhancement CT images were delineated manually by a radiologist. Second, average, median, and wiener filter were applied to reduce photon noise before feature extraction. The first-order texture features, including entropy, uniformity, average intensity, standard deviation, kurtosis and skewness were calculated from each ROI. Third, support vector machine analysis was applied for classification. Several statistical values were calculated to evaluate the performance of the presented method, which includes accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area of under receiver operating characteristic curve (AUC).

Results: The entropy, uniformity, mean intensity, standard deviation, skewness (P < 0.05), except kurtosis (P = 0.104) of thyroid tissue with nodules have a significant difference from those of normal thyroid tissue. The optimal classification was obtained from the presented method. The accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) are 0.880, 0.821, 0.933, 0.917, 0.854, and 0.953 respectively.

Conclusion: First order texture features can be used as imaging biomarkers, and the presented system can be used to assist radiologists to recognize the nodules in CT image.

ContributorsPeng, Wenxian (Author) / Liu, Chenbin (Author) / Xia, Shunren (Author) / Shao, Dangdang (Author) / Chen, Yihong (Author) / Liu, Rui (Author) / Zhang, Zhiping (Author) / Biodesign Institute (Contributor)
Created2017-06-02
128619-Thumbnail Image.png
Description

Cervical cancer is the most common malignancy among women particularly in developing countries, with human papillomavirus (HPV) 16 causing 50% of invasive cervical cancers. A plant-based HPV vaccine is an alternative to the currently available virus-like particle (VLP) vaccines, and would be much less expensive. We optimized methods to express

Cervical cancer is the most common malignancy among women particularly in developing countries, with human papillomavirus (HPV) 16 causing 50% of invasive cervical cancers. A plant-based HPV vaccine is an alternative to the currently available virus-like particle (VLP) vaccines, and would be much less expensive. We optimized methods to express HPV16 L1 protein and purify VLPs from tobacco (Nicotiana benthamiana) leaves transfected with the magnICON deconstructed viral vector expression system. L1 proteins were extracted from agro-infiltrated leaves using a series of pH and salt mediated buffers. Expression levels of L1 proteins and VLPs were verified by immunoblot and ELISA, which confirmed the presence of sequential and conformational epitopes, respectively. Among three constructs tested (16L1d22, TPL1d22, and TPL1F), TPL1F, containing a full-length L1 and chloroplast transit peptide, was best. Extraction of HPV16 L1 from leaf tissue was most efficient (> 2.5% of total soluble protein) with a low-salt phosphate buffer. VLPs were purified using both cesium chloride (CsCl) density gradient and size exclusion chromatography. Electron microscopy studies confirmed the presence of assembled forms of HPV16 L1 VLPs. Collectively; our results indicated that chloroplast-targeted transient expression in tobacco plants is promising for the production of a cheap, efficacious HPV16 L1 VLP vaccine. Studies are underway to develop plant VLPs for the production of a cervical cancer vaccine.

ContributorsZahin, Maryam (Author) / Joh, Joongho (Author) / Khanal, Sujita (Author) / Husk, Adam (Author) / Mason, Hugh (Author) / Warzecha, Heribert (Author) / Ghim, Shin-je (Author) / Miller, Donald M. (Author) / Matoba, Nobuyuki (Author) / Bennett Jenson, Alfred (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-08-12