This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 31
Filtering by

Clear all filters

127838-Thumbnail Image.png
Description

We compute one-loop renormalization group equations for non-singlet twist-four operators in QCD. The calculation heavily relies on the light-cone gauge formalism in the momentum fraction space that essentially rephrases the analysis of all two-to-two and two-to-three transition kernels to purely algebraic manipulations both for non- and quasipartonic operators. This is

We compute one-loop renormalization group equations for non-singlet twist-four operators in QCD. The calculation heavily relies on the light-cone gauge formalism in the momentum fraction space that essentially rephrases the analysis of all two-to-two and two-to-three transition kernels to purely algebraic manipulations both for non- and quasipartonic operators. This is the first brute force calculation of this sector available in the literature. Fourier transforming our findings to the coordinate space, we checked them against available results obtained within a conformal symmetry-based formalism that bypasses explicit diagrammatic calculations and confirmed agreement with the latter.

ContributorsJi, Yao (Author) / Belitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-06
129423-Thumbnail Image.png
Description

Recently, there has been an increased interest in using behavioral experiments to study hypotheses on the governance of social-ecological systems. A diversity of software tools are used to implement such experiments. We evaluated various publicly available platforms that could be used in research and education on the governance of social-ecological

Recently, there has been an increased interest in using behavioral experiments to study hypotheses on the governance of social-ecological systems. A diversity of software tools are used to implement such experiments. We evaluated various publicly available platforms that could be used in research and education on the governance of social-ecological systems. The aims of the various platforms are distinct, and this is noticeable in the differences in their user-friendliness and their adaptability to novel research questions. The more easily accessible platforms are useful for prototyping experiments and for educational purposes to illustrate theoretical concepts. To advance novel research aims, more elaborate programming experience is required to either implement an experiment from scratch or adjust existing experimental software. There is no ideal platform best suited for all possible use cases, but we have provided a menu of options and their associated trade-offs.

Created2013-11-30
128562-Thumbnail Image.png
Description

We find that the flow of attention on the Web forms a directed, tree-like structure implying the time-sensitive browsing behavior of users. Using the data of a news sharing website, we construct clickstream networks in which nodes are news stories and edges represent the consecutive clicks between two stories. To

We find that the flow of attention on the Web forms a directed, tree-like structure implying the time-sensitive browsing behavior of users. Using the data of a news sharing website, we construct clickstream networks in which nodes are news stories and edges represent the consecutive clicks between two stories. To identify the flow direction of clickstreams, we define the “flow distance” of nodes (Li), which measures the average number of steps a random walker takes to reach the ith node. It is observed that Li is related with the clicks (Ci) to news stories and the age (Ti) of stories. Putting these three variables together help us understand the rise and decay of news stories from a network perspective. We also find that the studied clickstream networks preserve a stable structure over time, leading to the scaling between users and clicks. The universal scaling behavior is confirmed by the 1,000 Web forums. We suggest that the tree-like, stable structure of clickstream networks reveals the time-sensitive preference of users in online browsing. To test our assumption, we discuss three models on individual browsing behavior, and compare the simulation results with empirical data.

ContributorsWang, Cheng-Jun (Author) / Wu, Lingfei (Author) / Zhang, Jiang (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-28
128523-Thumbnail Image.png
Description

The planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2…

The planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.

Created2017-02-07
128761-Thumbnail Image.png
Description

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can make contributions to a linear public good by logging into a web application and performing virtual actions. We compared four treatments, with different group sizes and information of (relative) performance of other groups. We find that information feedback about performance of other groups has a small positive effect if we control for various attributes of the groups. Moreover, we find a significant effect of the contributions of others in the group in the previous day on the number of points earned in the current day. Our results confirm that people participate more when participants in their group participate more, and are influenced by information about the relative performance of other groups.

ContributorsJanssen, Marco (Author) / Lee, Allen (Author) / Sundaram, Hari (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-07-26
128778-Thumbnail Image.png
Description

Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems

Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems in the world. We construct attention networks to model the growth of 110 communities in the Stack Exchange system and quantify individual answering strategies using the linking dynamics on attention networks. We identify two answering strategies. Strategy A aims at performing maintenance by doing simple tasks, whereas strategy B aims at investing time in doing challenging tasks. Both strategies are important: empirical evidence shows that strategy A decreases the median waiting time for answers and strategy B increases the acceptance rate of answers. In investigating the strategic persistence of users, we find that users tends to stick on the same strategy over time in a community, but switch from one strategy to the other across communities. This finding reveals the different sets of knowledge and skills between users. A balance between the population of users taking A and B strategies that approximates 2:1, is found to be optimal to the sustainable growth of communities.

ContributorsWu, Lingfei (Author) / Baggio, Jacopo (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-03-02
129248-Thumbnail Image.png
Description

During the last 40 years evidence from systematic case study analysis and behavioral experiments have provided a comprehensive perspective on how communities can manage common resources in a sustainable way. The conventional theory based on selfish rational actors cannot explain empirical observations. A more comprehensive theoretical framework of human behavior

During the last 40 years evidence from systematic case study analysis and behavioral experiments have provided a comprehensive perspective on how communities can manage common resources in a sustainable way. The conventional theory based on selfish rational actors cannot explain empirical observations. A more comprehensive theoretical framework of human behavior is emerging that include concepts such as trust, conditional cooperation, other-regarding preferences, social norms, and reputation. The new behavioral perspective also demonstrates that behavioral responses depend on social and biophysical context.

Created2015-02-01
129358-Thumbnail Image.png
Description

We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility on social-ecological outcomes. Our model is a stylized representation of a dynamic population of agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount close to the maximum sustainable yield) and selfish

We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility on social-ecological outcomes. Our model is a stylized representation of a dynamic population of agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount close to the maximum sustainable yield) and selfish agents (those who harvest an amount greater than the sustainable yield) are simulated in the model. Three indicators of the outcomes of the system are analyzed: the number of settlements, the resource level, and the proportion of cooperators in the population. Our paper adds a more realistic approach to previous studies on the evolution of cooperation by considering a social-ecological system in which agents move in a landscape to harvest a renewable resource. Our results conclude that resource dynamics play an important role when studying levels of cooperation and resource use. Our simulations show that the agents’ mobility significantly affects the outcomes of the system. This response is nonlinear and very sensible to the type of spatial distribution of the resource richness. In our simulations, better outcomes of long-term sustainability of the resource are obtained with moderate agent mobility and cooperation is enhanced in harsh environments with low resource level in which cooperative groups have natural boundaries fostered by agents’ low mobility.

ContributorsPerez, Irene (Author) / Janssen, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-24
129443-Thumbnail Image.png
Description

Allowing resource users to communicate in behavioural experiments on commons dilemmas increases the level of cooperation. In actual common pool resource dilemmas in the real world, communication is costly, which is an important detail missing from most typical experiments. We conducted experiments where participants must give up harvesting opportunities to

Allowing resource users to communicate in behavioural experiments on commons dilemmas increases the level of cooperation. In actual common pool resource dilemmas in the real world, communication is costly, which is an important detail missing from most typical experiments. We conducted experiments where participants must give up harvesting opportunities to communicate. The constrained communication treatment is compared with the effect of limited information about the state of the resource and the actions of the other participants. We find that despite making communication costly, performance of groups improves in all treatments with communication. We also find that constraining communication has a more significant effect than limiting information on the performance of groups.

ContributorsJanssen, Marco (Author) / Tyson, Madeline (Author) / Lee, Allen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129133-Thumbnail Image.png
Description

Sustainability theory can help achieve desirable social-ecological states by generalizing lessons across contexts and improving the design of sustainability interventions. To accomplish these goals, we argue that theory in sustainability science must (1) explain the emergence and persistence of social-ecological states, (2) account for endogenous cultural change, (3) incorporate cooperation

Sustainability theory can help achieve desirable social-ecological states by generalizing lessons across contexts and improving the design of sustainability interventions. To accomplish these goals, we argue that theory in sustainability science must (1) explain the emergence and persistence of social-ecological states, (2) account for endogenous cultural change, (3) incorporate cooperation dynamics, and (4) address the complexities of multilevel social-ecological interactions. We suggest that cultural evolutionary theory broadly, and cultural multilevel selection in particular, can improve on these fronts. We outline a multilevel evolutionary framework for describing social-ecological change and detail how multilevel cooperative dynamics can determine outcomes in environmental dilemmas. We show how this framework complements existing sustainability frameworks with a description of the emergence and persistence of sustainable institutions and behavior, a means to generalize causal patterns across social-ecological contexts, and a heuristic for designing and evaluating effective sustainability interventions. We support these assertions with case examples from developed and developing countries in which we track cooperative change at multiple levels of social organization as they impact social-ecological outcomes. Finally, we make suggestions for further theoretical development, empirical testing, and application.

ContributorsWaring, Timothy M. (Author) / Kline, Michelle (Author) / Brooks, Jeremy S. (Author) / Goff, Sandra H. (Author) / Gowdy, John (Author) / Janssen, Marco (Author) / Smaldino, Paul E. (Author) / Jacquet, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-30