This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 47
Filtering by

Clear all filters

129552-Thumbnail Image.png
Description

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80 °C, −20 °C, and room temperature and exposed to multiple freeze-thaw cycles and other adverse conditions in order to assess the possibility that protein oxidation may occur as a result of poor sample storage or handling. Samples from a healthy donor and a participant with poorly controlled type 2 diabetes started at the same low level of protein oxidation and behaved similarly; significant increases in albumin oxidation via S-cysteinylation were found to occur within hours at room temperature and days at −20 °C. Methionine oxidation of apoA-I took place on a longer time scale, setting in after albumin oxidation reached a plateau. Freeze–thaw cycles had a minimal effect on protein oxidation. In matched collections, protein oxidation in serum was the same as that in plasma. Albumin and apoA-I oxidation were not affected by sample headspace or the degree to which vials were sealed. ApoA-I, however, was unexpectedly found to oxidize faster in samples with lower surface-area-to-volume ratios. An initial survey of samples from patients with inflammatory conditions normally associated with elevated oxidative stress-including acute myocardial infarction and prostate cancer—demonstrated a lack of detectable apoA-I oxidation. Albumin S-cysteinylation in these samples was consistent with known but relatively brief exposures to temperatures above −30 °C (the freezing point of blood plasma). Given their properties and ease of analysis, these oxidized proteoforms, once fully validated, may represent the first markers of blood plasma specimen integrity based on direct measurement of oxidative molecular damage that can occur under suboptimal storage conditions.

ContributorsBorges, Chad (Author) / Rehder, Douglas (Author) / Jensen, Sally (Author) / Schaab, Matthew (Author) / Sherma, Nisha (Author) / Yassine, Hussein (Author) / Nikolova, Boriana (Author) / Breburda, Christian (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
129547-Thumbnail Image.png
Description

A brief review of manganese-catalyzed hydrosilylation is presented along with a personal account of how the design for the highly active catalyst, (Ph2PPrPDI)Mn, was conceived. The reductive transformations achieved using this catalyst are described and put into further context by comparing the observed activities with those attained for leading late

A brief review of manganese-catalyzed hydrosilylation is presented along with a personal account of how the design for the highly active catalyst, (Ph2PPrPDI)Mn, was conceived. The reductive transformations achieved using this catalyst are described and put into further context by comparing the observed activities with those attained for leading late first-row transition-metal catalysts.

ContributorsTrovitch, Ryan (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
128849-Thumbnail Image.png
Description

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the β-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.

ContributorsMarkwardt, Michele L. (Author) / Kremers, Gert-Jan (Author) / Kraft, Catherine A. (Author) / Ray, Krishanu (Author) / Cranfill, Paula J. C. (Author) / Wilson, Korey A. (Author) / Day, Richard N. (Author) / Wachter, Rebekka (Author) / Davidson, Michael W. (Author) / Rizzo, Mark A. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2011-03-29
129270-Thumbnail Image.png
Description

In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a

In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-to-red photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the β barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities.

ContributorsKim, Hanseong (Author) / Zou, Taisong (Author) / Modi, Chintan (Author) / Dorner, Katerina (Author) / Grunkemeyer, Timothy (Author) / Chen, Liqing (Author) / Fromme, Raimund (Author) / Matz, Mikhail V. (Author) / Ozkan, Sefika (Author) / Wachter, Rebekka (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-01-06
128912-Thumbnail Image.png
Description

A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of dro

A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.

ContributorsYanashima, Ryan (Author) / Garcia, Antonio (Author) / Aldridge, James (Author) / Weiss, Noah (Author) / Hayes, Mark (Author) / Andrews, James H. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2012-09-24
128883-Thumbnail Image.png
Description

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can “run away” and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can “run away” and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is predicted by models of tumor angiogenesis studied with the techniques of adaptive dynamics. These techniques also predict that selection drives tumor proliferative potential towards an evolutionarily stable strategy (ESS) that is also convergence-stable. However, adaptive dynamics are predicated on two key assumptions: (i) no more than two distinct clones or evolutionary strategies can exist in the tumor at any given time; and (ii) mutations cause small phenotypic changes. Here we show, using a stochastic simulation, that relaxation of these assumptions has no effect on the predictions of adaptive dynamics in this case. In particular, selection drives proliferative potential towards, and angiogenic potential away from, their respective ESSs. However, these simulations also show that tumor behavior is highly contingent on mutational history, particularly for angiogenesis. Individual tumors frequently grow to lethal size before the evolutionary endpoint is approached. In fact, most tumor dynamics are predicted to be in the evolutionarily transient regime throughout their natural history, so that clinically, the ESS is often largely irrelevant. In addition, we show that clonal diversity as measured by the Shannon Information Index correlates with the speed of approach to the evolutionary endpoint. This observation dovetails with results showing that clonal diversity in Barrett's esophagus predicts progression to malignancy.

ContributorsBickel, Scott T. (Author) / Juliano, Joseph (Author) / Nagy, John (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-04-14
128928-Thumbnail Image.png
Description

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical device to measure the electrogenic output of a planktonically grown cyanobacterium, Synechocystis sp. PCC6803. Light dependent production of current is measured, and its magnitude is shown to scale with microbial cell concentration and light intensity. Bioelectrochemical characterization of a Synechocystis mutant lacking Photosystem II demonstrates conclusively that production of the majority of photocurrent requires a functional water splitting aparatus and electrons are likely ultimately derived from water. This shows the potential of the device to rapidly and quantitatively characterize photocurrent production by genetically modified strains, an approach that can be used in future studies to delineate the mechanisms of cyanobacterial extracellular electron transport.

ContributorsCereda, Angelo (Author) / Hitchcock, Andrew (Author) / Symes, Mark D. (Author) / Cronin, Leroy (Author) / Bibby, Thomas S. (Author) / Jones, Anne (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-03-17
129374-Thumbnail Image.png
Description

Formally zerovalent (κ3-phosphine)Fe(η4-COT) complexes supported by either Triphos (PhP(CH2CH2PPh2)2) or Triphos* (H3CC(CH2PPh2)3) have been prepared following chelate addition to (COT)2Fe (COT = 1,3,5,7-cyclooctatetraene) and by reduction of the respective dibromide complexes in the presence of excess COT. The solid-state structure of each complex was determined by single-crystal X-ray diffraction, and

Formally zerovalent (κ3-phosphine)Fe(η4-COT) complexes supported by either Triphos (PhP(CH2CH2PPh2)2) or Triphos* (H3CC(CH2PPh2)3) have been prepared following chelate addition to (COT)2Fe (COT = 1,3,5,7-cyclooctatetraene) and by reduction of the respective dibromide complexes in the presence of excess COT. The solid-state structure of each complex was determined by single-crystal X-ray diffraction, and close inspection of the metrical parameters revealed significant COT ligand reduction, independent of the coordination geometry about iron. While the neutral and dianionic forms of the redox-active COT ligand have historically received a great deal of attention, a dearth of information regarding the often-evoked radical monoanion form of this ligand prompted the full electronic structure investigation of these complexes using a range of techniques. Comparison of the Mössbauer spectroscopic data collected for both (Triphos)Fe(η4-COT) complexes with data obtained for two appropriate reference compounds indicated that they possess a low-spin Fe(I) center that is antiferromagnetically coupled to a COT radical monoanion. Further evidence for this electronic structure determination by EPR spectroscopy and cyclic voltammetry is presented. A comparison of the solid-state metrical parameters determined in this study to those of related first-row transition-metal complexes has provided insight into the electronic structure analysis of related organometallic complexes.

ContributorsMukhopadhyay, Tufan (Author) / Flores, Marco (Author) / Feller, Russell K. (Author) / Scott, Brian L. (Author) / Taylor, R. Dean (Author) / Paz-Pasternak, Moshe (Author) / Henson, Neil J. (Author) / Rein, Francisca N. (Author) / Smythe, Nathan C. (Author) / Trovitch, Ryan (Author) / Gordon, John C. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-12-22
129343-Thumbnail Image.png
Description

Telomerase RNA (TER) is an essential component of the telomerase ribonucleoprotein complex. The mechanism for TER 3′-end processing is highly divergent among different organisms. Here we report a unique spliceosome-mediated TER 3′-end cleavage mechanism in Neurospora crassa that is distinct from that found specifically in the fission yeast Schizosaccharomyces pombe.

Telomerase RNA (TER) is an essential component of the telomerase ribonucleoprotein complex. The mechanism for TER 3′-end processing is highly divergent among different organisms. Here we report a unique spliceosome-mediated TER 3′-end cleavage mechanism in Neurospora crassa that is distinct from that found specifically in the fission yeast Schizosaccharomyces pombe. While the S. pombe TER intron contains the canonical 5′-splice site GUAUGU, the N. crassa TER intron contains a non-canonical 5′-splice site AUAAGU that alone prevents the second step of splicing and promotes spliceosomal cleavage. The unique N. crassa TER 5′-splice site sequence is evolutionarily conserved in TERs from Pezizomycotina and early branching Taphrinomycotina species. This suggests that the widespread and basal N. crassa-type spliceosomal cleavage mechanism is more ancestral than the S. pombe-type. The discovery of a prevalent, yet distinct, spliceosomal cleavage mechanism throughout diverse fungal clades furthers our understanding of TER evolution and non-coding RNA processing.

ContributorsQi, Xiaodong (Author) / Rand, Dustin (Author) / Podlevsky, Joshua (Author) / Li, Yang (Author) / Mosig, Axel (Author) / Stadler, Peter F. (Author) / Chen, Julian (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-01-01
129433-Thumbnail Image.png
Description

Electrophoretic exclusion, a technique that differentiates species in bulk solution near a channel entrance, has been demonstrated on benchtop and microdevice designs. In these systems, separation occurs when the electrophoretic velocity of one species is greater than the opposing hydrodynamic flow, while the velocity of the other species is less

Electrophoretic exclusion, a technique that differentiates species in bulk solution near a channel entrance, has been demonstrated on benchtop and microdevice designs. In these systems, separation occurs when the electrophoretic velocity of one species is greater than the opposing hydrodynamic flow, while the velocity of the other species is less than that flow. Although exclusion has been demonstrated in multiple systems for a range of analytes, a theoretical assessment of resolution has not been addressed. To compare the results of these calculations to traditional techniques, the performance is expressed in terms of smallest difference in electrophoretic mobilities that can be completely separated (R = 1.5). The calculations indicate that closest resolvable species (Δμc) differ by approximately 10-13 m2/Vs and peak capacity (nc) is 1000. Published experimental data were compared to these calculated results.

ContributorsKenyon, Stacy (Author) / Keebaugh, Michael (Author) / Hayes, Mark (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-01