This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 45
Filtering by

Clear all filters

Description

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

ContributorsKupitz, Christopher (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Fromme, Raimund (Author) / Zatsepin, Nadia (Author) / Rendek, Kimberly (Author) / Hunter, Mark (Author) / Shoeman, Robert L. (Author) / White, Thomas A. (Author) / Wang, Dingjie (Author) / James, Daniel (Author) / Yang, Jay-How (Author) / Cobb, Danielle (Author) / Reeder, Brenda (Author) / Sierra, Raymond G. (Author) / Liu, Haiguang (Author) / Barty, Anton (Author) / Aquila, Andrew L. (Author) / Deponte, Daniel (Author) / Kirian, Richard (Author) / Bari, Sadia (Author) / Bergkamp, Jesse (Author) / Beyerlein, Kenneth R. (Author) / Bogan, Michael J. (Author) / Caleman, Carl (Author) / Chao, Tzu-Chiao (Author) / Conrad, Chelsie (Author) / Davis, Katherine M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-11
Description

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above low-frequency background city noise. However, the ability to make such song modifications may be constrained by several morphological factors, including bill gape, size, and shape, thereby limiting the degree to which certain species can vocally adapt to urban settings. We examined the relationship between song characteristics and bill morphology in a species (the house finch, Haemorhous mexicanus) where both vocal performance and bill size are known to differ between city and rural animals.

Results: We found that bills were longer and narrower in more disturbed, urban areas. We observed an increase in minimum song frequency of urban birds, and we also found that the upper frequency limit of songs decreased in direct relation to bill morphology.

Conclusions: These findings are consistent with the hypothesis that birds with longer beaks and therefore longer vocal tracts sing songs with lower maximum frequencies because longer tubes have lower-frequency resonances. Thus, for the first time, we reveal dual constraints (one biotic, one abiotic) on the song frequency range of urban animals. Urban foraging pressures may additionally interact with the acoustic environment to shape bill traits and vocal performance.

ContributorsGiraudeau, Mathieu (Author) / Nolan, Paul M. (Author) / Black, Caitlin E. (Author) / Earl, Stevan (Author) / Hasegawa, Masaru (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-12
Description

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods.

ContributorsHunter, Mark S. (Author) / Segelke, Brent (Author) / Messerschmidt, Marc (Author) / Williams, Garth J. (Author) / Zatsepin, Nadia (Author) / Barty, Anton (Author) / Benner, W. Henry (Author) / Carlson, David B. (Author) / Coleman, Matthew (Author) / Graf, Alexander (Author) / Hau-Riege, Stefan P. (Author) / Pardini, Tommaso (Author) / Seibert, M. Marvin (Author) / Evans, James (Author) / Boutet, Sebastien (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-12
Description

The glucose metabolism level reflects cell proliferative status. A polymeric glucose ratiometric sensor comprising poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMAETMA) was synthesized. Cellular internalization and glucose response of the polymer within HeLa cells were investigated.

ContributorsZhang, Liqiang (Author) / Su, Fengyu (Author) / Buizer, Sean (Author) / Kong, Xiangxing (Author) / Lee, Fred (Author) / Day, Kevin (Author) / Tian, Yanqing (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2014-05-07
127883-Thumbnail Image.png
Description

Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge

Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge to implement. Here, we demonstrate a rapid, simple, indiscriminate, and minimally perturbing cell patterning method using a laser fabricated polymer stencil. The stencil fabrication process requires no stencil-substrate alignment, and is readily adaptable to various substrate geometries and experiments.

ContributorsMessner, Jacob J. (Author) / Glenn, Honor (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2017-12-19
127853-Thumbnail Image.png
Description

Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of

Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field.

ContributorsKelbauskas, Laimonas (Author) / Shetty, Rishabh Manoj (Author) / Cao, Bin (Author) / Wang, Kuo-Chen (Author) / Smith, Dean (Author) / Wang, Hong (Author) / Chao, Shi-Hui (Author) / Gangaraju, Sandhya (Author) / Ashcroft, Brian (Author) / Kritzer, Margaret (Author) / Glenn, Honor (Author) / Johnson, Roger (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2017-12-06
127836-Thumbnail Image.png
Description

Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction

Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.

ContributorsCasadei, Cecilia M. (Author) / Tsai, Ching-Ju (Author) / Barty, Anton (Author) / Hunter, Mark S. (Author) / Zatsepin, Nadia (Author) / Padeste, Celestino (Author) / Capitani, Guido (Author) / Benner, W. Henry (Author) / Boutet, Sebastien (Author) / Hau-Riege, Stefan P. (Author) / Kupitz, Christopher (Author) / Messerschmidt, Marc (Author) / Ogren, John I. (Author) / Pardini, Tom (Author) / Rothschild, Kenneth J. (Author) / Sala, Leonardo (Author) / Segelke, Brent (Author) / Williams, Garth J. (Author) / Evans, James E. (Author) / Li, Xiao-Dan (Author) / Coleman, Matthew (Author) / Pedrini, Bill (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2018-01
128823-Thumbnail Image.png
Description

With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an

With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH2) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields.

ContributorsSu, Fengyu (Author) / Alam, Ruhaniyah (Author) / Mei, Qian (Author) / Tian, Yanqing (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2011-09-06
128810-Thumbnail Image.png
Description

Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar

Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar solution than in tetrahydrofuran (THF) and dichloromethane (CH2Cl2). PtTFPP in micelles also exhibited higher photostability than that of PtTFPP suspended in water. PtTFPP in micelles exhibited good oxygen sensitivity and response time. This study provided an efficient approach to enable the application of hydrophobic oxygen sensors in a biological environment.

ContributorsSu, Fengyu (Author) / Alam, Ruhaniyah (Author) / Mei, Qian (Author) / Tian, Yanqing (Author) / Youngbull, Cody (Author) / Johnson, Roger (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2012-03-22
128799-Thumbnail Image.png
Description

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals or if these infections increase physiological stress in urban populations.

Methodology/Principal Findings: Here, we measured the prevalence and severity of infection with intestinal coccidians (Isospora sp.) and the canarypox virus (Avipoxvirus) along an urban-to-rural gradient in wild male house finches (Haemorhous mexicanus). In addition, we quantified an important stress indicator in animals (oxidative stress) and several axes of urbanization, including human population density and land-use patterns within a 1 km radius of each trapping site. Prevalence of poxvirus infection and severity of coccidial infection were significantly associated with the degree of urbanization, with an increase of infection in more urban areas. The degrees of infection by the two parasites were not correlated along the urban-rural gradient. Finally, levels of oxidative damage in plasma were not associated with infection or with urbanization metrics.

Conclusion/Significance: These results indicate that the physical presence of humans in cities and the associated altered urban landscape characteristics are associated with increased infections with both a virus and a gastrointestinal parasite in this common songbird resident of North American cities. Though we failed to find elevations in urban- or parasite/pathogen-mediated oxidative stress, humans may facilitate infections in these birds via bird feeders (i.e. horizontal disease transmission due to unsanitary surfaces and/or elevations in host population densities) and/or via elevations in other forms of physiological stress (e.g. corticosterone, nutritional).

ContributorsGiraudeau, Mathieu (Author) / Mousel, Melanie (Author) / Earl, Stevan (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-02-04