This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 26 of 26
Filtering by

Clear all filters

129055-Thumbnail Image.png
Description

Background: Diet-derived carotenoid pigments are concentrated in the retinas of birds and serve a variety of functions, including photoprotection. In domesticated bird species (e.g., chickens and quail), retinal carotenoid pigmentation has been shown to respond to large manipulations in light exposure and provide protection against photodamage. However, it is not known

Background: Diet-derived carotenoid pigments are concentrated in the retinas of birds and serve a variety of functions, including photoprotection. In domesticated bird species (e.g., chickens and quail), retinal carotenoid pigmentation has been shown to respond to large manipulations in light exposure and provide protection against photodamage. However, it is not known if or how wild birds respond to ecologically relevant variation in sun exposure.

Methods: We manipulated the duration of natural sunlight exposure and dietary carotenoid levels in wild-caught captive House Finches (Haemorhous mexicanus), then measured carotenoid accumulation and oxidative stress in the retina.

Results: We found no significant effects of sun exposure on retinal levels of carotenoids or lipid peroxidation, in replicate experiments, in winter (Jan–Mar) and spring/summer (May–June). Dietary carotenoid supplementation in the spring/summer experiment led to significantly higher retinal carotenoid levels, but did not affect lipid peroxidation. Carotenoid levels differed significantly between the winter and spring/summer experiments, with higher retinal and lower plasma carotenoid levels in birds from the later experiment.

Conclusion: Our results suggest that variation in the duration of exposure to direct sunlight have limited influence on intraspecific variation in retinal carotenoid accumulation, but that accumulation may track other seasonal–environmental cues and physiological processes.

ContributorsToomey, Matthew (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-29
129045-Thumbnail Image.png
Description

Background: Androgens bind to the androgen receptor (AR) in prostate cells and are essential survival factors for healthy prostate epithelium. Most untreated prostate cancers retain some dependence upon the AR and respond, at least transiently, to androgen ablation therapy. However, the relationship between endogenous androgen levels and cancer etiology is unclear.

Background: Androgens bind to the androgen receptor (AR) in prostate cells and are essential survival factors for healthy prostate epithelium. Most untreated prostate cancers retain some dependence upon the AR and respond, at least transiently, to androgen ablation therapy. However, the relationship between endogenous androgen levels and cancer etiology is unclear. High levels of androgens have traditionally been viewed as driving abnormal proliferation leading to cancer, but it has also been suggested that low levels of androgen could induce selective pressure for abnormal cells. We formulate a mathematical model of androgen regulated prostate growth to study the effects of abnormal androgen levels on selection for pre-malignant phenotypes in early prostate cancer development.

Results: We find that cell turnover rate increases with decreasing androgen levels, which may increase the rate of mutation and malignant evolution. We model the evolution of a heterogeneous prostate cell population using a continuous state-transition model. Using this model we study selection for AR expression under different androgen levels and find that low androgen environments, caused either by low serum testosterone or by reduced 5α-reductase activity, select more strongly for elevated AR expression than do normal environments. High androgen actually slightly reduces selective pressure for AR upregulation. Moreover, our results suggest that an aberrant androgen environment may delay progression to a malignant phenotype, but result in a more dangerous cancer should one arise.

Conclusions: The model represents a useful initial framework for understanding the role of androgens in prostate cancer etiology, and it suggests that low androgen levels can increase selection for phenotypes resistant to hormonal therapy that may also be more aggressive. Moreover, clinical treatment with 5α-reductase inhibitors such as finasteride may increase the incidence of therapy resistant cancers.

ContributorsEikenberry, Steffen (Author) / Nagy, John D. (Author) / Kuang, Yang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2010-04-20
128354-Thumbnail Image.png
Description

This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray

This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.

ContributorsDaurer, Benedikt J. (Author) / Okamoto, Kenta (Author) / Bielecki, Johan (Author) / Maia, Filipe R. N. C. (Author) / Muhlig, Kerstin (Author) / Seibert, M. Marvin (Author) / Hantke, Max F. (Author) / Nettelblad, Carl (Author) / Benner, W. Henry (Author) / Svenda, Martin (Author) / Timneanu, Nicusor (Author) / Ekeberg, Tomas (Author) / Loh, N. Duane (Author) / Pietrini, Alberto (Author) / Zani, Alessandro (Author) / Rath, Asawari D. (Author) / Westphal, Daniel (Author) / Kirian, Richard (Author) / Awel, Salah (Author) / Wiedorn, Max O. (Author) / van der Schot, Gijs (Author) / Carlsson, Gunilla H. (Author) / Hasse, Dirk (Author) / Sellberg, Jonas A. (Author) / Barty, Anton (Author) / Andreasson, Jakob (Author) / Boutet, Sebastien (Author) / Williams, Garth (Author) / Koglin, Jason (Author) / Andersson, Inger (Author) / Hajdu, Janos (Author) / Larsson, Daniel S. D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-04-07
128159-Thumbnail Image.png
Description

Though many animal ornaments and signals are sensitive to and encode information about the oxidative balance (OB) of individuals (e.g., antioxidant supplies/activity, reactive oxygen species, cellular oxidative damage/repair), often the environmental and/or physiological sources of such OB are unknown. Urban development is among the most recent, pervasive, and persistent human

Though many animal ornaments and signals are sensitive to and encode information about the oxidative balance (OB) of individuals (e.g., antioxidant supplies/activity, reactive oxygen species, cellular oxidative damage/repair), often the environmental and/or physiological sources of such OB are unknown. Urban development is among the most recent, pervasive, and persistent human stressors on the planet and impacts many environmental and physiological parameters of animals. Here we review the mechanistic underpinnings and functional consequences of how human urbanization drives antioxidant/oxidative status in animals and how this affects signal expression and use. Although we find that urbanization has strong negative effects on signal quality (e.g., visual, auditory, chemical) and OB across a range of taxa, few urban ecophysiological studies address signals and oxidative stress in unison, and even fewer in a fitness context. We also highlight particular signal types, taxa, life-histories, and anthropogenic environmental modifications on which future work integrating OB, signals, and urbanization could be centered. Last, we examine the conceptual and empirical framework behind the idea that urban conditions may disentangle signal expression from honesty and affect plasticity and adaptedness of sexually selected traits and preferences in the city.

ContributorsHutton, Pierce (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-19
128044-Thumbnail Image.png
Description
A modified mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with cytotoxic T-lymphocytes (CTL) and infected cells in eclipse phase is presented and studied in this paper. The model under consideration also includes a saturated rate describing viral infection. First, the positivity and boundedness of solutions for nonnegative initial

A modified mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with cytotoxic T-lymphocytes (CTL) and infected cells in eclipse phase is presented and studied in this paper. The model under consideration also includes a saturated rate describing viral infection. First, the positivity and boundedness of solutions for nonnegative initial data are proved. Next, the global stability of the disease free steady state and the endemic steady states are established depending on the basic reproduction number R[subscript 0] and the CTL immune response reproduction number R[subscript CTL]. Moreover, numerical simulations are performed in order to show the numerical stability for each steady state and to support our theoretical findings. Our model based findings suggest that system immunity represented by CTL may control viral replication and reduce the infection.
ContributorsAllali, Karam (Author) / Danane, Jaouad (Author) / Kuang, Yang (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-21
129206-Thumbnail Image.png
Description

Vertebrates cannot synthesize carotenoid pigments de novo, so to produce carotenoid-based coloration they must ingest carotenoids. Most songbirds that deposit red carotenoids in feathers, bills, eyes, or skin ingest only yellow or orange dietary pigments, which they oxidize to red pigments via a ketolation reaction. It has been hypothesized that

Vertebrates cannot synthesize carotenoid pigments de novo, so to produce carotenoid-based coloration they must ingest carotenoids. Most songbirds that deposit red carotenoids in feathers, bills, eyes, or skin ingest only yellow or orange dietary pigments, which they oxidize to red pigments via a ketolation reaction. It has been hypothesized that carotenoid ketolation occurs in the liver of vertebrates, but this hypothesis remains to be confirmed. To better understand the role of hepatocytes in the production of ketolated carotenoids in songbirds, we measured the carotenoid content of subcellular components of hepatocytes from wild male house finches (Haemorhous mexicanus) that were molting red, ketocarotenoid-containing feathers (e.g., 3-hydroxy-echinenone). We homogenized freshly collected livers of house finches and isolated subcellular fractions, including mitochondria. We found the highest concentration of ketocarotenoids in the mitochondrial fraction. These observations are consistent with the hypothesis that carotenoid pigments are oxidized on or within hepatic mitochondria, esterified, and then transported to the Golgi apparatus for secretory processing.

ContributorsGe, Zhiyuan (Author) / Johnson, James D. (Author) / Cobine, Paul A. (Author) / McGraw, Kevin (Author) / Garcia, Rosana (Author) / Hill, Geoffrey E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-01